首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   5篇
  2021年   2篇
  2019年   3篇
  2018年   1篇
  2017年   3篇
  2016年   4篇
  2015年   3篇
  2014年   4篇
  2013年   5篇
  2012年   17篇
  2011年   18篇
  2010年   6篇
  2009年   2篇
  2008年   16篇
  2007年   11篇
  2006年   7篇
  2005年   14篇
  2004年   7篇
  2003年   6篇
  2002年   3篇
  2001年   1篇
  1998年   1篇
  1996年   1篇
  1992年   2篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1970年   1篇
排序方式: 共有142条查询结果,搜索用时 15 毫秒
51.
N-Acetylglucosamine-1-phosphate uridyltransferase (GlmU) catalyzes the first step in peptidoglycan biosynthesis in both Gram-positive and Gram-negative bacteria. The products of the GlmU reaction are essential for bacterial survival, making this enzyme an attractive target for antibiotic drug discovery. A series of Haemophilus influenzae GlmU (hiGlmU) structures were determined by X-ray crystallography in order to provide structural and functional insights into GlmU activity and inhibition. The information derived from these structures was combined with biochemical characterization of the K25A, Q76A, D105A, Y103A, V223A, and E224A hiGlmU mutants in order to map these active-site residues to catalytic activity of the enzyme and refine the mechanistic model of the GlmU uridyltransferase reaction. These studies suggest that GlmU activity follows a sequential substrate-binding order that begins with UTP binding noncovalently to the GlmU enzyme. The uridyltransferase active site then remains in an open apo-like conformation until N-acetylglucosamine-1-phosphate (GlcNAc-1-P) binds and induces a conformational change at the GlcNAc-binding subsite. Following the binding of GlcNAc-1-P to the UTP-charged uridyltransferase active site, the non-esterified oxygen of GlcNAc-1-P performs a nucleophilic attack on the alpha-phosphate group of UTP. The new data strongly suggest that the mechanism of phosphotransfer in the uridyltransferase reaction in GlmU is primarily through an associative mechanism with a pentavalent phosphate intermediate and an inversion of stereochemistry. Finally, the structural and biochemical characterization of the uridyltransferase active site and catalytic mechanism described herein provides a basis for the structure-guided design of novel antibacterial agents targeting GlmU activity.  相似文献   
52.
53.
Integrins, focal adhesions, the cytoskeleton and the extracellular matrix, form a structural continuum between the external and internal environment of the cell and mediate the pathways associated with cellular mechanosensitivity and mechanotransduction. This continuum is important for the onset of muscle tissue generation, as muscle precursor cells (myoblasts) require a mechanical stimulus to initiate myogenesis. The ability to sense a mechanical cue requires an intact cytoskeleton and strong physical contact and adhesion to the microenvironment. Importantly, myoblasts also undergo reorientation, alignment and large scale remodeling of the cytoskeleton when they experience mechanical stretch and compression in muscle tissue. It remains unclear if such dramatic changes in cell architecture also inhibit physical contact and adhesion with the tissue microenvironment that are clearly important to myoblast physiology. In this study, we employed interference reflection microscopy to examine changes in the close physical contact of myoblasts with a substrate during induced remodeling of the cytoarchitecture (de-stabilization of the actin and microtubule cytoskeleton and inhibition of acto-myosin contractility). Our results demonstrate that while each remodeling pathway caused distinct effects on myoblast morphology and sub-cellular structure, we only observed a ∼13% decrease in close physical contact with the substrate, regardless of the pathway inhibited. However, this decrease did not correlate well with changes in cell adhesion strength. On the other hand, there was a close correlation between cell adhesion and β1-integrin expression and the presence of cell-secreted fibronectin, but not with the presence of intact focal adhesions. In this study, we have shown that myoblasts are able to maintain a large degree of physical contact and adhesion to the microenvironment, even during shot periods (<60 min) of large scale remodeling and physiological stress, which is essential to their in-vivo functionality.  相似文献   
54.
55.
In this work, we report on the interaction of polyacrylic acid with phosphatidylcholine bilayers and monolayers in slightly acidic medium. We found that adsorption of polyacrylic acid on liposomes composed of egg lecithin at pH 4.2 results in the formation of small pores permeable for low molecular weight solutes. However, the pores were impermeable for trypsin indicating that no solubilization of liposomes occurred. The pores were permeable for both positively charged trypsin substrate N-benzoyl-l-arginine ethyl ester and negatively charged pH-indicator pyranine. Two lines of evidence were obtained confirming the involvement of the membrane dipole potential in the insertion of polyacrylic acid into lipid bilayer. (i) Addition of phloretin, a molecule which is known to decrease dipole potential of lipid bilayer, reduced the rate of a polyacrylic acid induced leakage of pyranine from liposomes. (ii) Direct measurements of air/lipid monolayer/water interface surface potential using Kelvin probe showed that adsorption of polyacrylic acid at pH 4.2 induced a decrease in both boundary and dipole potential by 37 and 62mV for ester lipid dioleoylphosphatidylcholine (DOPC). Replacement of DOPC by ether lipid 1,2-di-O-oleyl-sn-glycero-3-phosphocholine (DiOOPC) which is known to form monolayers and bilayers with only minor dipole component of membrane potential showed that addition of PAA produced similar response in the boundary potential (by 50mV) but negligible response in dipole potential of monolayer. These observations agree with our assumption that dipole potential is an important driving force for the insertion of polyacids into biological membranes.  相似文献   
56.
Here we report the obtaining of suspension, callus and hairy root culture initiated from carrot plants of Nantskaya and Perfektzya variety with the highest level of recombinant human interferon-2b accumulation exhibiting the highest level of plant protein extract antiviral activity (up to 12.8 × 103 IU/mg TSP). The antiviral activity of callus extracts was significantly lower comparing to the activity of plant extracts from the parent organisms. However, the antiviral activity level of suspension culture extracts (up to 4.42 × 103 IU/mg TSP) and Ri-root ones (up to 4.42 × 103 IU/mg TSP) appeared to be comparable to analogical data of antiviral activity of transgenic carrot leaf extracts, this way the described cultures could be possibly used for comparatively speedy obtaining of recombinant therapeutic protein for curing and preventing of virus diseases.  相似文献   
57.
58.
Phosphinothricin-resistant plants of commercial summer rapeseed varieties (Brassica napus L. var. oleifera DC) were obtained by means of Agrobacterium tumefaciens-mediated transformation of leaf disks. The vector structures contained the promoterless coding sequence of the phosphinothricin acetyltransferase gene (bar), which is situated between two inverted lox sites (elements of the Cre/lox recombination systems of the PI phage) and the selective neomycinphosphotransferase II gene (nptII). The presence of the newly introduced genes in the genome of the obtained plants is confirmed by the polymerase chain reaction method. Stable and linked inheritance of these genes in the T1 and T2 generations is demonstrated.  相似文献   
59.
Development of RNAi-based therapeutics is a fast growing field of the pharmaceutical industry. Using plants for production of pharmaceutically valuable siRNAs may have significant advantages of costeffectiveness, scalability, and low risk of contamination with human pathogens. If edible plant species are genetically engineered to synthesize siRNAs, the costly stage of target product purification may be omitted. We describe the establishment of transgenic lettuce plants producing shRNA targeting delta isoform of protein kinase C (PKC-delta), an effective target for RNAi-based treatment of arterial hypertension. Transgenic lettuce plants were obtained by Agrobacterium-mediated transformation with genetic constructs harboring antiPKC and scrambled (control) shRNA genes. The presence of transgenes was proven by PCR analysis, and the accumulation of antiPKC shRNA was estimated using the RT-qPCR technique. Six transgenic lettuce lines showed varying levels of antiPKC shRNA expression with the highest value reaching 14 ± 9% of highly abundant endogenous lettuce micro RNA (miR156a), or 12.7 fmol/g dry weight. Plants carrying either antiPKC or scrambled shRNA genes flowered normally but did not produce seeds. The described transgenic lettuce plants accumulating antiPKC siRNA are the subject for animal testing and can be considered as raw material for the development of novel antihypertensive drugs.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号