首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   333篇
  免费   25篇
  2022年   2篇
  2021年   4篇
  2020年   6篇
  2019年   2篇
  2018年   4篇
  2017年   6篇
  2016年   7篇
  2015年   11篇
  2014年   9篇
  2013年   21篇
  2012年   21篇
  2011年   13篇
  2010年   11篇
  2009年   13篇
  2008年   22篇
  2007年   14篇
  2006年   22篇
  2005年   12篇
  2004年   9篇
  2003年   18篇
  2002年   11篇
  2001年   12篇
  2000年   15篇
  1999年   10篇
  1998年   7篇
  1997年   5篇
  1996年   5篇
  1995年   2篇
  1994年   3篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1983年   4篇
  1979年   2篇
  1978年   2篇
  1977年   4篇
  1976年   2篇
  1974年   3篇
  1971年   2篇
  1970年   2篇
  1969年   3篇
  1967年   2篇
  1958年   1篇
  1957年   1篇
  1956年   1篇
排序方式: 共有358条查询结果,搜索用时 31 毫秒
31.
Human apolipoprotein (apo) E4 binds preferentially to very low-density lipoproteins (VLDLs), whereas apoE3 binds preferentially to high-density lipoproteins (HDLs), resulting in different plasma cholesterol levels for the two isoforms. To understand the molecular basis for this effect, we engineered the isolated apoE N-terminal domain (residues 1-191) and C-terminal domain (residues 192-299) together with a series of variants containing deletions in the C-terminal domain and assessed their lipid and lipoprotein binding properties. Both isoforms can bind to a phospholipid (PL)-stabilized triolein emulsion, and residues 261-299 are primarily responsible for this activity. ApoE4 exhibits better lipid binding ability than apoE3 as a consequence of a rearrangement involving the segment spanning residues 261-272 in the C-terminal domain. The strong lipid binding ability of apoE4 coupled with the VLDL particle surface being ~60% PL-covered is the basis for its preference for binding VLDL rather than HDL. ApoE4 binds much more strongly than apoE3 to VLDL but less strongly than apoE3 to HDL(3), consistent with apoE-lipid interactions being relatively unimportant for binding to HDL. The preference of apoE3 for binding to HDL(3) arises because binding is mediated primarily by interaction of the N-terminal helix bundle domain with the resident apolipoproteins that cover ~80% of the HDL(3) particle surface. Thus, the selectivity in the binding of apoE3 and apoE4 to HDL(3) and VLDL is dependent upon two factors: (1) the stronger lipid binding ability of apoE4 relative to that of apoE3 and (2) the differences in the nature of the surfaces of VLDL and HDL(3) particles, with the former being largely covered with PL and the latter with protein.  相似文献   
32.
Cochlear microphonics (CMs), which represent the electrical activity of hair cells, and compound action potentials (CAPs), which represent the activity of the auditory nerve, were recorded from the round window of the inner ear, in owlets aged between 5 and 97 days posthatching, i.e., from soon after hatching to beyond fledgling. At the earliest ages examined, animals showed very insensitive CM and virtually no CAP responses. Thus, hearing in barn owls develops entirely posthatching and the birds appear to be profoundly deaf well into the second week. Thresholds improved gradually after that and CMs reached their adult sensitivity at 5 weeks posthatching at all frequencies. Compound action potential responses appeared progressively later with increasing frequency. Adult neural sensitivity was achieved about 1 week later than for the CM responses at most frequencies, but took until 9–10 weeks posthatching at the highest frequencies (8–10 kHz). This indicates an apex-to-base maturation sequence of neural sensitivity within the cochlea, with a disproportionately long period to maturity for the most basal regions. Compound action potential amplitudes matured even later, at about 3 months posthatching, at all frequencies. This suggests a prolonged immaturity in the temporal synchrony of spiking in the auditory nerve.  相似文献   
33.
34.

Background:

The San Francisco Syncope Rule has been proposed as a clinical decision rule for risk stratification of patients presenting to the emergency department with syncope. It has been validated across various populations and settings. We undertook a systematic review of its accuracy in predicting short-term serious outcomes.

Methods:

We identified studies by means of systematic searches in seven electronic databases from inception to January 2011. We extracted study data in duplicate and used a bivariate random-effects model to assess the predictive accuracy and test characteristics.

Results:

We included 12 studies with a total of 5316 patients, of whom 596 (11%) experienced a serious outcome. The prevalence of serious outcomes across the studies varied between 5% and 26%. The pooled estimate of sensitivity of the San Francisco Syncope Rule was 0.87 (95% confidence interval [CI] 0.79–0.93), and the pooled estimate of specificity was 0.52 (95% CI 0.43–0.62). There was substantial between-study heterogeneity (resulting in a 95% prediction interval for sensitivity of 0.55–0.98). The probability of a serious outcome given a negative score with the San Francisco Syncope Rule was 5% or lower, and the probability was 2% or lower when the rule was applied only to patients for whom no cause of syncope was identified after initial evaluation in the emergency department. The most common cause of false-negative classification for a serious outcome was cardiac arrhythmia.

Interpretation:

The San Francisco Syncope Rule should be applied only for patients in whom no cause of syncope is evident after initial evaluation in the emergency department. Consideration of all available electrocardiograms, as well as arrhythmia monitoring, should be included in application of the San Francisco Syncope Rule. Between-study heterogeneity was likely due to inconsistent classification of arrhythmia.Syncope is defined as sudden, transient loss of consciousness with the inability to maintain postural tone, followed by spontaneous recovery and return to pre-existing neurologic function.15 It represents a common clinical problem, accounting for 1%–3% of visits to the emergency department and up to 6% of admissions to acute care hospitals.6,7Assessment of syncope in patients presenting to the emergency department is challenging because of the heterogeneity of underlying pathophysiologic processes and diseases. Although many underlying causes of syncope are benign, others are associated with substantial morbidity or mortality, including cardiac arrhythmia, myocardial infarction, pulmonary embolism and occult hemorrhage.4,810 Consequently, a considerable proportion of patients with benign causes of syncope are admitted for inpatient evaluation.11,12 Therefore, risk stratification that allows for the safe discharge of patients at low risk of a serious outcome is important for efficient management of patients in emergency departments and for reduction of costs associated with unnecessary diagnostic workup.12,13In recent years, various prediction rules based on the probability of an adverse outcome after an episode of syncope have been proposed.3,1416 However, the San Francisco Syncope Rule, derived by Quinn and colleagues in 2004,3 is the only prediction rule for serious outcomes that has been validated in a variety of populations and settings. This simple, five-step clinical decision rule is intended to identify patients at low risk of short-term serious outcomes3,17 (Box 1).

Box 1:

San Francisco Syncope Rule3

AimPrediction of short-term (within 30 days) serious outcomes in patients presenting to the emergency department with syncope.DefinitionsSyncope: Transient loss of consciousness with return to baseline neurologic function. Trauma-associated and alcohol- or drug-related loss of consciousness excluded, as is definite seizure or altered mental status.Serious outcome: Death, myocardial infarction, arrhythmia, pulmonary embolism, stroke, subarachnoid hemorrhage, significant hemorrhage or any condition causing or likely to cause a return visit to the emergency department and admission to hospital for a related event.Selection of predictors in multivariable analysis: Fifty predictor variables were evaluated for significant associations with a serious outcome and combined to create a minimal set of predictors that are highly sensitive and specific for prediction of a serious outcome.Clinical decision ruleFive risk factors, indicated by the mnemonic “CHESS,” were identified to predict patients at high risk of a serious outcome:
  • C – History of congestive heart failure
  • H – Hematocrit < 30%
  • E – Abnormal findings on 12-lead ECG or cardiac monitoring17 (new changes or nonsinus rhythm)
  • S – History of shortness of breath
  • S – Systolic blood pressure < 90 mm Hg at triage
Note: ECG = electrocardiogram.The aim of this study was to conduct a systematic review and meta-analysis of the accuracy of the San Francisco Syncope Rule in predicting short-term serious outcome for patients presenting to the emergency department with syncope.  相似文献   
35.
The antioxidant -lipoic acid (ALA) has been shown to affect a variety of biological processes associated with oxidative stress including cancer. We determined in HT-29 human colon cancer cells whether ALA is able to affect apoptosis, as an important parameter disregulated in tumour development. Exposure of cells to ALA or its reduced form dihydrolipoic acid (DHLA) for 24 h dose dependently increased caspase-3-like activity and was associated with DNA-fragmentation. DHLA but not ALA was able to scavenge cytosolic O2–. in HT-29 cells whereas both compounds increased O2– .-generation inside mitochondria. Increased mitochondrial O2– .-production was preceded by an increased influx of lactate or pyruvate into mitochondria and resulted in the down-regulation of the anti-apoptotic protein bcl-XL. Mitochondrial O2–.-generation and apoptosis induced by ALA and DHLA could be prevented by the O2– .-scavenger benzoquinone. Moreover, when the lactate/pyruvate transporter was inhibited by 5-nitro-2-(3-phenylpropylamino) benzoate, ALA- and DHLA-induced mitochondrial ROS-production and apoptosis were blocked. In contrast to HT-29 cells, no apoptosis was observed in non-transformed human colonocytes in response to ALA or DHLA addition. In conclusion, our study provides evidence that ALA and DHLA can effectively induce apoptosis in human colon cancer cells by a prooxidant mechanism that is initiated by an increased uptake of oxidizable substrates into mitochondria.  相似文献   
36.
Thioredoxin peroxidase 1 (TPx1) of the malarial parasite Plasmodium falciparum is a 2-Cys peroxiredoxin involved in the detoxification of reactive oxygen species and - as shown here - of reactive nitrogen species. As novel electron acceptor of reduced TPx1, we characterised peroxynitrite; the rate constant for ONOO- reduction by the enzyme (1 x 10(6) M(-1) s(-1) at pH 7.4 and 37 degrees C) was determined by stopped-flow measurements. As reducing substrate of TPx1, we identified - aside from thioredoxin - plasmoredoxin; this 22-kDa protein occurs only in malarial parasites. When studying the potential roles of Cys74 and Cys170 of Tpx1 in catalysis, as well as in oligomerisation behaviour, we found that replacement of Cys74 by Ala influenced neither the dimerisation nor enzymatic activity of TPx1. In the C170A mutant, however, the kcat/Km for reduced Trx as a substrate was shown to be approximately 50-fold lower and, in contrast to the wild-type enzyme, covalently linked dimers were not formed. For the catalytic cycle of TPx1, we conclude that oxidation of the peroxidatic Cys50 by the oxidising substrate is followed by the formation of an intermolecular disulfide bond between Cys50 and Cys170' of the second subunit, which is then attacked by an external electron donor such as thioredoxin or plasmoredoxin.  相似文献   
37.
The partitioning of apolipoprotein A-I (apoA-I) molecules in plasma between HDL-bound and -unbound states is an integral part of HDL metabolism. We used the surface plasmon resonance (SPR) technique to monitor in real time the reversible binding of apoA-I to HDL. Biotinylated human HDL2 and HDL3 were immobilized on a streptavidin-coated SPR sensor chip, and apoA-I solutions at different concentrations were flowed across the surface. The wild-type (WT) human and mouse apoA-I/HDL interaction involves a two-step process; apoA-I initially binds to HDL with fast association and dissociation rates, followed by a step exhibiting slower kinetics. The isolated N-terminal helix bundle domains of human and mouse apoA-I also exhibit a two-step binding process, consistent with the second slower step involving opening of the helix bundle domain. The results of fluorescence experiments with pyrene-labeled apoA-I are consistent with the N-terminal helix bundle domain interacting with proteins resident on the HDL particle surface. Dissociation constants (Kd) measured for WT human apoA-I interactions with HDL2 and HDL3 are about 10 µM, indicating that the binding is low affinity. This Kd value does not apply to all of the apoA-I molecules on the HDL particle but only to a relatively small, labile pool.Understanding the structure and function of HDL is significant because of the beneficial cardioprotective properties of this lipoprotein (1). The anti-atherogenic effects of HDL arise, in part, from its participation in the reverse cholesterol transport pathway where the principal HDL protein, apolipoprotein A-I (apoA-I), plays a central role (2). As a result, the structure-function relationships of apoA-I have been studied extensively (for reviews, see Refs. 35). Perhaps the most important characteristic of the apoA-I molecule is its ability to bind lipids; this interaction is mediated by the amphipathic α-helices present in the protein molecule (6). ApoA-I binds well to phospholipid (PL)-water interfaces and, under appropriate conditions, can solubilize the PL to create discoidal HDL particles (7, 8). The binding of apoA-I to a PL surface involves a two-step mechanism. First, α-helices in the C-terminal domain of the protein interact with the surface, and, second, the N-terminal helix bundle domain opens to allow more helix-lipid interactions to occur (5, 9). Although the binding of apoA-I to model PL particles has been studied extensively, the binding of apoA-I to HDL particles has not been investigated much because of the difficulty of separating free and bound apoA-I in this system. This lack of information about apoA-I/HDL interactions is significant because the cycling of apoA-I molecules on and off HDL particles occurs during the metabolism of HDL particles (10, 11), in particular to release apoA-I molecules into the preβ-HDL pool (10, 12). This recycling is consistent with the well-established ability of apolipoproteins, such as apoA-I, to exchange spontaneously between different populations of lipoprotein particles (1316) and PL vesicles (17, 18). As a rule, any remodeling event that depletes HDL particles of PL induces particle fusion and dissociation of that fraction of the apoA-I molecules that is in a labile pool (19). At this stage, quantitative understanding of the kinetics of apoA-I interactions with HDL particles is unavailable.Here, we exploit surface plasmon resonance (SPR) to monitor in real time the association and dissociation reactions in the apoA-I/HDL system. SPR has been used to derive quantitative information about the binding of both lipoproteins (20) and apoE (2123) to proteoglycans. As far as the application of SPR to the HDL system is concerned, the binding of several plasma remodeling factors to HDL immobilized on a sensor chip has been investigated successfully (2426). Also, the conformation of apoA-I in HDL was explored by comparing the binding of HDL particles to anti-apoA-I monoclonal antibodies immobilized on an SPR chip (27). We have extended these approaches to study the binding of apoA-I to HDL particles. The results show that apoA-I can bind reversibly and with low affinity to HDL particles by a two-step mechanism.  相似文献   
38.
The nascent HDL created by ABCA1-mediated efflux of cellular phospholipid (PL) and free (unesterified) cholesterol (FC) to apolipoprotein A-I (apoA-I) has not been defined. To address this issue, we characterized the lipid particles released when J774 mouse macrophages and human skin fibroblasts in which ABCA1 is activated are incubated with human apoA-I. In both cases, three types of nascent HDL containing two, three, or four molecules of apoA-I per particle are formed. With J774 cells, the predominant species have hydrodynamic diameters of approximately 9 and 12 nm. These discoidal HDL particles have different FC contents and PL compositions, and the presence of acidic PL causes them to exhibit alpha-electrophoretic mobility. These results are consistent with ABCA1 located in more than one membrane microenvironment being responsible for the production of the heterogeneous HDL. Activation of ABCA1 also leads to the release of apoA-I-free plasma membrane vesicles (microparticles). These larger, spherical particles released from J774 cells have the same PL composition as the 12 nm HDL and contain CD14 and ganglioside, consistent with their origin being plasma membrane raft domains. The various HDL particles and microparticles are created concurrently, and there is no precursor-product relationship between them. Importantly, a large fraction of the cellular FC effluxed from these cells by ABCA1 is located in microparticles. Collectively, these results show that the products of the apoA-I/ABCA1 interaction include discoidal HDL particles containing different numbers of apoA-I molecules. The cellular PLs and cholesterol incorporated into these nascent HDL particles originate from different cell membrane domains.  相似文献   
39.
The fundamental role played by connexins including connexin43 (Cx43) in forming intercellular communication channels (gap junctions), ensuring electrical and metabolic coupling between cells, has long been recognized and extensively investigated. There is also increasing recognition that Cx43, and other connexins, have additional roles, such as the ability to regulate cell proliferation, migration, and cytoprotection. Multiple phosphorylation sites, targets of different signaling pathways, are present at the regulatory, C-terminal domain of Cx43, and contribute to constitutive as well as transient phosphorylation Cx43 patterns, responding to ever-changing environmental stimuli and corresponding cellular needs. The present paper will focus on Cx43 in the heart, and provide an overview of the emerging recognition of a relationship between Cx43, its phosphorylation pattern, and development of resistance to injury. We will also review our recent work regarding the role of an enhanced phosphorylation state of Cx43 in cardioprotection. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.  相似文献   
40.
A survey was conducted to determine the assemblage and abundance of plant-parasitic nematodes and their associations with soil factors in organically farmed fields in Minnesota. A total of 31 soil samples were collected from southeast (SE), 26 samples from southwest (SW), 28 from west-central (WC), and 23 from northwest (NW) Minnesota. The assemblage and abundance of plant-parasitic nematodes varied among the four regions. The soybean cyst nematode, Heterodera glycines, the most destructive pathogen of soybean, was detected in 45.2, 88.5, 10.7, and 0% of organically farmed fields with relative prominence (RP) values of 10.3, 26.5, 0.6, and 0 in the SE, SW, WC, and NW regions, respectively. Across the four regions, other common genera of plant-parasitic nematodes were Helicotylenchus (42.6, RP value, same below), Pratylenchus (26.9), Tylenchorhynchus and related genera (9.4), Xiphinema (5.6), and Paratylenchus (5.3). Aphelenchoides, Meloidogyne, Hoplolaimus, Mesocriconema, and Trichodorus were also detected at low frequencies and/or low population densities. The similarity index of plant-parasitic nematodes between two regions ranged from 0.44 to 0.71 and the similarity increased with decreasing distance between regions. The densities of most plant-parasitic nematodes did not correlate with measured soil factors (organic matter, pH, texture). However, the densities of Pratylenchus correlated negatively with % sand, and Xiphinema was correlated negatively with soil pH.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号