首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2876篇
  免费   242篇
  3118篇
  2023年   9篇
  2022年   32篇
  2021年   45篇
  2020年   31篇
  2019年   44篇
  2018年   52篇
  2017年   34篇
  2016年   67篇
  2015年   136篇
  2014年   169篇
  2013年   169篇
  2012年   239篇
  2011年   225篇
  2010年   113篇
  2009年   116篇
  2008年   174篇
  2007年   179篇
  2006年   157篇
  2005年   158篇
  2004年   172篇
  2003年   156篇
  2002年   144篇
  2001年   39篇
  2000年   22篇
  1999年   40篇
  1998年   45篇
  1997年   39篇
  1996年   24篇
  1995年   27篇
  1994年   21篇
  1993年   28篇
  1992年   19篇
  1991年   15篇
  1990年   21篇
  1989年   16篇
  1988年   13篇
  1987年   14篇
  1986年   8篇
  1985年   15篇
  1984年   9篇
  1983年   13篇
  1982年   12篇
  1981年   6篇
  1980年   12篇
  1979年   4篇
  1978年   7篇
  1974年   5篇
  1973年   3篇
  1972年   3篇
  1971年   3篇
排序方式: 共有3118条查询结果,搜索用时 10 毫秒
141.
Following allergen challenge of sensitized mice, neutrophils are the first inflammatory cells found in bronchoalveolar lavage (BAL) fluid. To determine the underlying mechanism for their accumulation, mice were sensitized to OVA on days 0 and 14, and received, on day 28, a single intranasal challenge (s.i.n.) with either OVA or ragweed. Eight hours after the s.i.n., BAL fluid was obtained. BALB/c mice sensitized and challenged with OVA showed significantly higher total cell counts and numbers of neutrophils in BAL fluid compared to the OVA-sensitized and ragweed-challenged or nonsensitized mice. Levels of neutrophil chemokines in BAL fluid supernatants were markedly elevated in the sensitized and OVA-challenged mice; Fc epsilon RI-deficient mice showed comparable numbers of neutrophils and neutrophil chemokines in BAL fluid after s.i.n. But in sensitized mice lacking the Fc common gamma-chain and B cell-deficient mice, the number of neutrophils and levels of neutrophil chemokines in BAL fluid were significantly lower. Further, mice lacking the FcgammaRIII did not develop this early neutrophil influx. Neutrophil infiltration could be induced in naive mice following intranasal instillation of allergen combined with allergen-specific IgG1. In addition, macrophages from sensitized mice were stimulated with allergen and activated to produce neutrophil chemokines. These results demonstrate that neutrophil influx after allergen challenge requires prior sensitization, is allergen-specific, is mediated through FcgammaRIII, and is dependent on the presence of Ab.  相似文献   
142.
Various drugs that elevate cGMP levels and activate cGMP-dependent protein kinase (cGK) inhibit agonist-induced platelet activation. In the present study we identified the LIM and SH3 domain protein (LASP) that was recently cloned from human breast cancer cells (Tomasetto, C., Regnier, C., Moog-Lutz, C., Mattei, M. G., Chenard, M. P., Liderau, R., Basset, P., and Rio, M. C. (1995) Genomics 28, 367-376) as a novel substrate of cGK in human platelets. Recombinant human LASP was phosphorylated by cGMP- and cAMP-dependent protein kinase (cAK) in vitro. Cotransfection of PtK-2 cells with LASP and cGK confirmed phosphorylation of LASP in vivo. Studies with human LASP mutants identified serine 146 as a specific phosphorylation site for cGK and cAK in vivo. LASP is an actin-binding protein, and the phospho-LASP-mimicking mutant S146D showed reduced binding affinity for F-actin in cosedimentation experiments. Immunofluorescence of transfected PtK2 cells demonstrated the localization of LASP in the tips of cell membrane extensions and at cell-cell contacts. Expression of the human LASP mutant S146D resulted in nearly complete relocalization to the cytosol and reduced migration of the cells. Taken together, these data suggest that phosphorylation of LASP by cGK and cAK may be involved in cytoskeletal organization and cell motility.  相似文献   
143.
The shape and nucleation of primary conidia are important characters in the classification of the Entomophthoraceae (Zygomycetes). The five species in the genus Eryniopsis vary in the shapes of primary conidia, although within most genera in the order Entomophthorales species have the same shapes of primary conidia. Using PCR-RFLP, we investigated two species in Eryniopsis, Ery. caroliniana with oblong-ovoid primary conidia and Ery. ptychopterae with pear-shaped primary conidia, with five species of Entomophaga, all having pear-shaped conidia. Molecular results merged with morphological data indicate that Ery. ptychopterae belongs in the genus Entomophaga while Ery. caroliniana clearly differs from Entomophaga. Ery. ptychopterae and Ery. transitans are transferred to the genus Entomophaga. Our results support the idea that morphology of primary conidia is of major importance in defining entomophthoralean genera. These results also show that such studies can be conducted with species that have not been isolated, if fungal-filled cadavers can be obtained.  相似文献   
144.
The turn-inducing sequence Ala-Aib introduced into positions 31 and 32 of neuropeptide Y (NPY) and its analogues has been identified as the key structure for Y(5)-receptor selectivity. Analogues of NPY and PP/NPY chimera containing the motif Ala-Aib were prepared; these peptides turned out to be selective for the Y(5)-receptor. The affinity of the NPY-based peptides was in the range of 6-150 nM, while the affinity of three (Ala-Aib)-containing PP/NPY chimera was in the range of 0.2-0.9 nM. The circular dichroism spectra of the Aib analogues in aqueous solution were all characteristic of an alpha helix; however, they had different intensities of the two negative bands at 220 and 208 nm. Affinity and selectivity for the Y(5)-receptor were correlated with the ratio of the ellipticity at 220 nm versus the one at 208 nm (R), which indicates the presence of a pronounced helix (R > 1) versus a less stabile one (R < 1). When R was in the range 0.74-0.96, the affinity at the Y(5)-receptor was in the range >5 nM, while there was complete loss of affinity at the Y(4)-receptor. R > 1.15 was associated with very high affinity at the Y(5)-receptor and weak affinity at the Y(4)-receptor. These results suggest that the selectivity of the Ala(31)-Aib(32) motif for the Y(5)-receptor derives from a specific conformation that must be correlated with the bioactive conformation of NPY at this subtype.  相似文献   
145.
Prominent endosomal and lysosomal changes are an invariant feature of neurons in sporadic Alzheimer's disease (AD). These changes include increased levels of lysosomal hydrolases in early endosomes and increased expression of the cation-dependent mannose 6-phosphate receptor (CD-MPR), which is partially localized to early endosomes. To determine whether AD-associated redistribution of lysosomal hydrolases resulting from changes in CD-MPR expression affects amyloid precursor protein (APP) processing, we stably transfected APP-overexpressing murine L cells with human CD-MPR. As controls for these cells, we also expressed CD-MPR trafficking mutants that either localize to the plasma membrane (CD-MPRpm) or to early endosomes (CD-MPRendo). Expression of CD-MPR resulted in a partial redistribution of a representative lysosomal hydrolase, cathepsin D, to early endosomal compartments. Turnover of APP and secretion of sAPPalpha and sAPPbeta were not altered by overexpression of any of the CD-MPR constructs. However, secretion of both human Abeta40 and Abeta42 into the growth media nearly tripled in CD-MPR- and CD-MPRendo-expressing cells when compared with parental or CD-MPRpm-expressing cells. Comparable increases were confirmed for endogenous mouse Abeta40 in L cells expressing these CD-MPR constructs but not overexpressing human APP. These data suggest that redistribution of lysosomal hydrolases to early endocytic compartments mediated by increased expression of the CD-MPR may represent a potentially pathogenic mechanism for accelerating Abeta generation in sporadic AD, where the mechanism of amyloidogenesis is unknown.  相似文献   
146.
Formyltransferase catalyzes the reversible formation of formylmethanofuran from N(5)-formyltetrahydromethanopterin and methanofuran, a reaction involved in the C1 metabolism of methanogenic and sulfate-reducing archaea. The crystal structure of the homotetrameric enzyme from Methanopyrus kandleri (growth temperature optimum 98 degrees C) has recently been solved at 1.65 A resolution. We report here the crystal structures of the formyltransferase from Methanosarcina barkeri (growth temperature optimum 37 degrees C) and from Archaeoglobus fulgidus (growth temperature optimum 83 degrees C) at 1.9 A and 2.0 A resolution, respectively. Comparison of the structures of the three enzymes revealed very similar folds. The most striking difference found was the negative surface charge, which was -32 for the M. kandleri enzyme, only -8 for the M. barkeri enzyme, and -11 for the A. fulgidus enzyme. The hydrophobic surface fraction was 50% for the M. kandleri enzyme, 56% for the M. barkeri enzyme, and 57% for the A. fulgidus enzyme. These differences most likely reflect the adaptation of the enzyme to different cytoplasmic concentrations of potassium cyclic 2,3-diphosphoglycerate, which are very high in M. kandleri (>1 M) and relatively low in M. barkeri and A. fulgidus. Formyltransferase is in a monomer/dimer/tetramer equilibrium that is dependent on the salt concentration. Only the dimers and tetramers are active, and only the tetramers are thermostable. The enzyme from M. kandleri is a tetramer, which is active and thermostable only at high concentrations of potassium phosphate (>1 M) or potassium cyclic 2,3-diphosphoglycerate. Conversely, the enzyme from M. barkeri and A. fulgidus already showed these properties, activity and stability, at much lower concentrations of these strong salting-out salts.  相似文献   
147.
Recent habitat loss and fragmentation superimposed upon ancient patterns of population subdivision are likely to have produced low levels of neutral genetic diversity and marked genetic structure in many plant species. The genetic effects of habitat fragmentation may be most pronounced in species that form small populations, are fully self-compatible and have limited seed dispersal. However, long-lived seed banks, mobile pollinators and long adult lifespans may prevent or delay the accumulation of genetic effects. We studied a rare Australian shrub species, Grevillea macleayana (Proteaceae), that occurs in many small populations, is self-compatible and has restricted seed dispersal. However, it has a relatively long adult lifespan (c. 30 years), a long-lived seed bank that germinates after fire and is pollinated by birds that are numerous and highly mobile. These latter characteristics raise the possibility that populations in the past may have been effectively large and genetically homogeneous. Using six microsatellites, we found that G. macleayana may have relatively low within-population diversity (3.2-4.2 alleles/locus; Hexp = 0.420-0.530), significant population differentiation and moderate genetic structure (FST = 0.218) showing isolation by distance, consistent with historically low gene flow. The frequency distribution of allele sizes suggest that this geographical differentiation is being driven by mutation. We found a lack mutation-drift equilibrium in some populations that is indicative of population bottlenecks. Combined with evidence for large spatiotemporal variation of selfing rates, this suggests that fluctuating population sizes characterize the demography in this species, promoting genetic drift. We argue that natural patterns of pollen and seed dispersal, coupled with the patchy, fire-shaped distribution, may have restricted long-distance gene flow in the past.  相似文献   
148.
Numerous studies have implicated either the presence or absence of CD36 in the development of hypertension. In addition, hypercholesterolemia is associated with the loss of nitric oxide-induced vasodilation and the subsequent increase in blood pressure. In the current study, we tested the hypothesis that diet-induced hypercholesterolemia promotes the disruption of agonist-stimulated nitric oxide generation and vasodilation in a CD36-dependent manner. To test this, C57BL/6, apoE null, CD36 null, and apoE/CD36 null mice were maintained on chow or high fat diets. In contrast to apoE null mice fed a chow diet, apoE null mice fed a high fat diet did not respond to acetylcholine with a decrease in blood pressure. Caveolae isolated from in vivo vessels did not contain endothelial nitric-oxide synthase and were depleted of cholesterol. Age-matched apoE/CD36 null mice fed a chow or high fat diet responded to acetylcholine with a decrease in blood pressure. The mechanism underlying the vascular dysfunction was reversible because vessels isolated from apoE null high fat-fed mice regained responsiveness to acetylcholine when incubated with plasma obtained from chow-fed mice. Further analysis demonstrated that the plasma low density lipoprotein fraction was responsible for depleting caveolae of cholesterol, removing endothelial nitric-oxide synthase from caveolae, and preventing nitric oxide production. In addition, the pharmacological removal of caveola cholesterol with cyclodextrin mimicked the effects caused by the low density lipoprotein fraction. We conclude that the ablation of CD36 prevented the negative impact of hypercholesterolemia on agonist-stimulated nitric oxide-mediated vasodilation in apoE null mice. These studies provide a direct link between CD36 and the early events that underlie hypercholesterolemia-mediated hypertension and mechanistic linkages between CD36 function, nitric-oxide synthase activation, caveolae integrity, and blood pressure regulation.  相似文献   
149.
We here report the influence of the cell cycle abrogator UCN-01 on RKO human colon carcinoma cells differing in p53 status following exposure to two DNA damaging agents, the topoisomerase inhibitors etoposide and camptothecin. Cells were treated with the two drugs at the IC90 concentration for 24 h followed by post-incubation in drug-free medium. RKO cells expressing wild-type, functional p53 arrested the cell cycle progression in both the G1 and G2 phases of the cell cycle whereas the RKO/E6 cells, which lack functional p53, only arrested in the G2 phase. Growth-arrested cells did not resume proliferation even after prolonged incubation in drug-free medium (up to 96 h). To evaluate the importance of the cell cycle arrest on cellular survival, a non-toxic dose of UCN-01 (100 nM) was added to the growth-arrested cells. The addition of UCN-01 was accompanied by mitotic entry as revealed by the appearance of condensed chromatin and the MPM-2 phosphoepitope, which is characteristic for mitotic cells. G2 exit and mitotic transit was accompanied by a rapid activation of caspase-3 and apoptotic cell death. The influence of UCN-01 on the long-term cytotoxic effects of the two drugs was also determined. Unexpectedly, abrogation of the G2 arrest had no influence on the overall cytotoxicity of either drug. In contrast, addition of UCN-01 to cisplatin-treated RKO and RKO/E6 cells greatly increased the cytotoxic effects of the alkylating agent. These results strongly suggest that even prolonged cell cycle arrest in the G2 phase of the cell cycle is not necessarily coupled to efficient DNA repair and enhanced cellular survival as generally believed.  相似文献   
150.
The closer muscle of large-clawed decapod crustaceans undergoes a proecdysial (premolt) atrophy to facilitate withdrawal of the appendage at ecdysis. This atrophy involves the activation of both calcium-dependent (calpains) and ubiquitin (Ub)/proteasome-dependent proteolytic systems that break down proteins to reduce muscle mass. Moreover, the large slow-twitch (S(1)) fibers undergo a greater atrophy than the small slow-tonic (S(2)) fibers. Both polyUb mRNA and Ub-protein conjugates increase during claw muscle atrophy. In this study in situ hybridization and RT-PCR were used to determine the temporal and spatial expression of polyUb and alpha-actin. A cDNA encoding the complete sequence of lobster muscle alpha-actin was characterized; a probe synthesized from the cDNA provided a positive control for optimizing RT-PCR and in situ hybridization. PolyUb was expressed at low levels in claw closer muscle from anecdysial (intermolt) land crab. By early proecdysis (premolt; stage D(0)), polyUb mRNA levels increased in medial fibers that insert along the midline of the apodeme, with greater expression in S(1) than S(2), while levels remained low in peripheral fibers. By late proecdysis, polyUb mRNA decreased in central fibers, while mRNA increased in peripheral S(1) fibers. In contrast, alpha-actin was expressed in lobster claw muscles at relatively constant levels during the intermolt cycle. These results suggest that Ub/proteasome-dependent proteolysis contributes to enhanced turnover of myofibrillar proteins during claw closer muscle atrophy. Furthermore, atrophy is not synchronous within the muscle; it begins in medial fibers and then progresses peripherally.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号