首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10455篇
  免费   1089篇
  国内免费   2篇
  11546篇
  2023年   64篇
  2022年   113篇
  2021年   246篇
  2020年   141篇
  2019年   166篇
  2018年   207篇
  2017年   204篇
  2016年   314篇
  2015年   508篇
  2014年   560篇
  2013年   631篇
  2012年   841篇
  2011年   810篇
  2010年   519篇
  2009年   438篇
  2008年   636篇
  2007年   602篇
  2006年   530篇
  2005年   532篇
  2004年   558篇
  2003年   481篇
  2002年   436篇
  2001年   157篇
  2000年   108篇
  1999年   127篇
  1998年   108篇
  1997年   84篇
  1996年   58篇
  1995年   63篇
  1994年   54篇
  1993年   46篇
  1992年   83篇
  1991年   80篇
  1990年   57篇
  1989年   63篇
  1988年   52篇
  1987年   46篇
  1986年   46篇
  1985年   55篇
  1984年   58篇
  1983年   41篇
  1982年   34篇
  1981年   28篇
  1980年   32篇
  1979年   35篇
  1978年   34篇
  1977年   36篇
  1976年   31篇
  1974年   29篇
  1972年   32篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.

Background

Butterflies and moths are emerging as model organisms in genetics and evolutionary studies. The family Hesperiidae (skippers) was traditionally viewed as a sister to other butterflies based on its moth-like morphology and darting flight habits with fast wing beats. However, DNA studies suggest that the family Papilionidae (swallowtails) may be the sister to other butterflies including skippers. The moth-like features and the controversial position of skippers in Lepidoptera phylogeny make them valuable targets for comparative genomics.

Results

We obtained the 310 Mb draft genome of the Clouded Skipper (Lerema accius) from a wild-caught specimen using a cost-effective strategy that overcomes the high (1.6 %) heterozygosity problem. Comparative analysis of Lerema accius and the highly heterozygous genome of Papilio glaucus revealed differences in patterns of SNP distribution, but similarities in functions of genes that are enriched in non-synonymous SNPs. Comparison of Lepidoptera genomes revealed possible molecular bases for unique traits of skippers: a duplication of electron transport chain components could result in efficient energy supply for their rapid flight; a diversified family of predicted cellulases might allow them to feed on cellulose-enriched grasses; an expansion of pheromone-binding proteins and enzymes for pheromone synthesis implies a more efficient mate-recognition system, which compensates for the lack of clear visual cues due to the similarities in wing colors and patterns of many species of skippers. Phylogenetic analysis of several Lepidoptera genomes suggested that the position of Hesperiidae remains uncertain as the tree topology varied depending on the evolutionary model.

Conclusion

Completion of the first genome from the family Hesperiidae allowed comparative analyses with other Lepidoptera that revealed potential genetic bases for the unique phenotypic traits of skippers. This work lays the foundation for future experimental studies of skippers and provides a rich dataset for comparative genomics and phylogenetic studies of Lepidoptera.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1846-0) contains supplementary material, which is available to authorized users.  相似文献   
993.

Background

It is now recognized that enzymatic or chemical side-reactions can convert normal metabolites to useless or toxic ones and that a suite of enzymes exists to mitigate such metabolite damage. Examples are the reactive imine/enamine intermediates produced by threonine dehydratase, which damage the pyridoxal 5''-phosphate cofactor of various enzymes causing inactivation. This damage is pre-empted by RidA proteins, which hydrolyze the imines before they do harm. RidA proteins belong to the YjgF/YER057c/UK114 family (here renamed the Rid family). Most other members of this diverse and ubiquitous family lack defined functions.

Results

Phylogenetic analysis divided the Rid family into a widely distributed, apparently archetypal RidA subfamily and seven other subfamilies (Rid1 to Rid7) that are largely confined to bacteria and often co-occur in the same organism with RidA and each other. The Rid1 to Rid3 subfamilies, but not the Rid4 to Rid7 subfamilies, have a conserved arginine residue that, in RidA proteins, is essential for imine-hydrolyzing activity. Analysis of the chromosomal context of bacterial RidA genes revealed clustering with genes for threonine dehydratase and other pyridoxal 5''-phosphate-dependent enzymes, which fits with the known RidA imine hydrolase activity. Clustering was also evident between Rid family genes and genes specifying FAD-dependent amine oxidases or enzymes of carbamoyl phosphate metabolism. Biochemical assays showed that Salmonella enterica RidA and Rid2, but not Rid7, can hydrolyze imines generated by amino acid oxidase. Genetic tests indicated that carbamoyl phosphate overproduction is toxic to S. enterica cells lacking RidA, and metabolomic profiling of Rid knockout strains showed ten-fold accumulation of the carbamoyl phosphate-related metabolite dihydroorotate.

Conclusions

Like the archetypal RidA subfamily, the Rid2, and probably the Rid1 and Rid3 subfamilies, have imine-hydrolyzing activity and can pre-empt damage from imines formed by amine oxidases as well as by pyridoxal 5''-phosphate enzymes. The RidA subfamily has an additional damage pre-emption role in carbamoyl phosphate metabolism that has yet to be biochemically defined. Finally, the Rid4 to Rid7 subfamilies appear not to hydrolyze imines and thus remain mysterious.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1584-3) contains supplementary material, which is available to authorized users.  相似文献   
994.
995.
This review focuses on the genetic features of psoriatic arthritis (PsA) and their relationship to phenotypic heterogeneity in the disease, and addresses three questions: what do the recent studies on human leukocyte antigen (HLA) tell us about the genetic relationship between cutaneous psoriasis (PsO) and PsA – that is, is PsO a unitary phenotype; is PsA a genetically heterogeneous or homogeneous entity; and do the genetic factors implicated in determining susceptibility to PsA predict clinical phenotype? We first discuss the results from comparing the HLA typing of two PsO cohorts: one cohort providing the dermatologic perspective, consisting of patients with PsO without evidence of arthritic disease; and the second cohort providing the rheumatologic perspective, consisting of patients with PsA. We show that these two cohorts differ considerably in their predominant HLA alleles, indicating the heterogeneity of the overall PsO phenotype. Moreover, the genotype of patients in the PsA cohort was shown to be heterogeneous with significant elevations in the frequency of haplotypes containing HLA-B*08, HLA-C*06:02, HLA-B*27, HLA-B*38 and HLA-B*39. Because different genetic susceptibility genes imply different disease mechanisms, and possibly different clinical courses and therapeutic responses, we then review the evidence for a phenotypic difference among patients with PsA who have inherited different HLA alleles. We provide evidence that different alleles and, more importantly, different haplotypes implicated in determining PsA susceptibility are associated with different phenotypic characteristics that appear to be subphenotypes. The implication of these findings for the overall pathophysiologic mechanisms involved in PsA is discussed with specific reference to their bearing on the discussion of whether PsA is conceptualised as an autoimmune process or one that is based on entheseal responses.  相似文献   
996.
Transient receptor potential (TRP) channels are non-selective ion channels permeable to cations including Na(+), Ca(2+) and Mg(2+). They play a unique role as cellular sensors and are involved in many Ca(2+)-mediated cell functions. Failure in channel gating can contribute to complex pathophysiological mechanisms. Dysfunctions of TRP channels cause diseases but are also involved in the progress of diseases. We present a novel method to analyse chemical compounds as potential activators or inhibitors of TRP channels to provide pharmaceutical tools to regulate channel activity for disease control. Compared to common methods such as patch clamp or Ca(2+) imaging, the presented impedance assay is automatable, experimental less demanding and not restricted to Ca(2+) flow. We have chosen TRPA1 from the TRPA ('ankyrin') family as a model channel which was stimulated by allyl isothiocyanate (AITC). HEK293 cells stably transfected with human TRPA1 cDNA were grown on microelectrode arrays. Confluent cell layers of high density were analysed. Impedance spectra of cell-covered and non-covered electrodes yielded a cell-specific signal at frequencies between 70 and 120 kHz. Therefore, 100 kHz was chosen to monitor TRPA1 activity thereupon. An average impedance decrease to about 70% of its original value was observed after application of 10 μM AITC indicating an increased conductance of the cell layer mediated by TRPA1. Transfected cells pretreated with 10 μM of inhibitor ruthenium red to prevent channel conductance, as well as control cells lacking TRPA1, showed no impedance changes upon AITC stimuli demonstrating the specificity of the novel impedance assay.  相似文献   
997.
Glycan chains that terminate in sialic acid (Neu5Ac) are frequently the receptors targeted by pathogens for initial adhesion. Carbohydrate-binding proteins (lectins) with specificity for Neu5Ac are particularly useful in the detection and isolation of sialylated glycoconjugates, such as those associated with pathogen adhesion as well as those characteristic of several diseases including cancer. Structural studies of lectins are essential in order to understand the origin of their specificity, which is particularly important when employing such reagents as diagnostic tools. Here, we report a crystallographic and molecular dynamics (MD) analysis of a lectin from Polyporus squamosus (PSL) that is specific for glycans terminating with the sequence Neu5Acα2-6Galβ. Because of its importance as a histological reagent, the PSL structure was solved (to 1.7??) in complex with a trisaccharide, whose sequence (Neu5Acα2-6Galβ1-4GlcNAc) is exploited by influenza A hemagglutinin for viral adhesion to human tissue. The structural data illuminate the origin of the high specificity of PSL for the Neu5Acα2-6Gal sequence. Theoretical binding free energies derived from the MD data confirm the key interactions identified crystallographically and provide additional insight into the relative contributions from each amino acid, as well as estimates of the importance of entropic and enthalpic contributions to binding.  相似文献   
998.
Estrogen action is mediated by the two receptor isoforms: estrogen receptor alpha and beta. Both receptors are expressed in human prostate tissue and have different action profiles. ERalpha is positively correlated with the malignancy of prostate cancer, while ERbeta may protect against abnormal prostate cell growth. 17β-Estradiol (E2), at least in part, induces cancerous transformations by causing deleterious mutations through the formation of reactive oxygen species (ROS). The aim was to study the effect of E2 on oxidative stress and the expression of uncoupling proteins (UCPs) and antioxidant enzymes in several prostate cancer cell lines with different ERalpha/ERbeta ratios. The cell prostate lines with a lower ERalpha/ERbeta ratio had lower oxidative stress, which could be partially explained by the increased expression of antioxidant enzymes and UCPs. Moreover, the action of E2 on the expression of antioxidant enzymes and UCPs was dual and dependent on the ERalpha/ERbeta ratio. Treatments with 0.1 nM E2 in cell lines with high ERalpha/ERbeta ratio produced a decrease in antioxidant enzymes and UCPs levels, with an increase in ROS production. These effects disappeared when the treatment was done in the presence of an ERalpha antagonist (MPP). In the cell lines with greatest levels of ERbeta and the lowest ERalpha/ERbeta ratio, E2 treatment caused the up-regulation of antioxidant enzymes and UCPs with a look-up decrease in ROS production. These effects were reversed when the cells were treated with E2 in the presence of an ERbeta antagonist (R,R-THC). On the whole, our results suggest a dual E2 effect; increasing or decreasing oxidative stress in part by modulation of UCPs and antioxidant enzymes according to the abundance ERbeta and ERalpha/ERbeta ratio in prostate cancer cell lines.  相似文献   
999.
Knockout of the Cyp-19 gene (aromatase) renders mice to have insufficient endogenous estrogen production and contributes to the development of symptoms related the metabolic syndrome, including excess adiposity and insulin resistance. This study comparatively assessed the estrogen responsiveness in animal models of genetical versus surgical (ovariectomy) origin of estrogen deficiency. Evaluation of physiological parameters and gene expression pattern in response to estrogens revealed differences in estrogen responsiveness between aromatase deficient and castrated or intact wild-type mice. ArKO mice had a significantly higher bodyweight than matched ovariectomized wild-type mice. The weight of the completely regressed uterus following ovariectomy was higher than the uterine weight of ArKO mice. Further, alterations in metabolic parameters like increased serum leptin levels and decreased plasma glucose levels in genetically deficient mice became apparent. Finally, expression pattern of estrogen responsive genes differed in the two experimental models of estrogen deficiency. Both, in uterine and adipose tissues the regulation of expression of some genes either was inversed of regulation or considerably differed in the magnitude of the response in the two models. Our studies demonstrate that the cause of estrogen deficiency significantly impacts on estrogen responsiveness and may be of relevance for investigations on aspects of estrogen deficiency and metabolic and/or menopausal symptoms.  相似文献   
1000.
Succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency is an inborn error of ketone body metabolism and causes episodic ketoacidosis. We report clinical and molecular analyses of 5 patients with SCOT deficiency. Patients GS07, GS13, and GS14 are homozygotes of S405P, L327P, and R468C, respectively. GS17 and GS18 are compound heterozygotes for S226N and A215V, and V404F and E273X, respectively. These mutations have not been reported previously. Missense mutations were further characterized by transient expression analysis of mutant cDNAs. Among 6 missense mutations, mutants L327P, R468C, and A215V retained some residual activities and their mutant proteins were detected in immunoblot analysis following expression at 37 °C. They were more stable at 30 °C than 37 °C, indicating their temperature sensitive character. The R468C mutant is a distinct temperature sensitive mutant which retained 12% and 51% of wild-type residual activities at 37 and 30 °C, respectively. The S226N mutant protein was detected but retained no residual activity. Effects of missense mutations were predicted from the tertiary structure of the SCOT molecule. Main effects of these mutations were destabilization of SCOT molecules, and some of them also affected catalytic activity. Among 5 patients, GS07 and GS18 had null mutations in both alleles and the other three patients retained some residual SCOT activities. All 5 developed a first severe ketoacidotic crisis with blood gas pH < 7.1, and experienced multiple ketoacidotic decompensations (two of them had seven such episodes). In general, the outcome was good even following multiple ketoacidotic events. Permanent ketosis or ketonuria is considered a pathognomonic feature of SCOT deficiency. However, this condition depends not only on residual activity but also on environmental factors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号