首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2793篇
  免费   264篇
  国内免费   17篇
  2023年   19篇
  2022年   37篇
  2021年   65篇
  2020年   34篇
  2019年   35篇
  2018年   47篇
  2017年   50篇
  2016年   92篇
  2015年   150篇
  2014年   161篇
  2013年   187篇
  2012年   240篇
  2011年   208篇
  2010年   148篇
  2009年   137篇
  2008年   184篇
  2007年   160篇
  2006年   150篇
  2005年   173篇
  2004年   165篇
  2003年   152篇
  2002年   135篇
  2001年   48篇
  2000年   31篇
  1999年   33篇
  1998年   36篇
  1997年   21篇
  1996年   14篇
  1995年   17篇
  1994年   15篇
  1993年   17篇
  1992年   13篇
  1991年   10篇
  1990年   10篇
  1989年   9篇
  1988年   16篇
  1987年   7篇
  1986年   4篇
  1985年   4篇
  1984年   3篇
  1982年   8篇
  1980年   2篇
  1979年   3篇
  1978年   3篇
  1977年   5篇
  1976年   5篇
  1972年   3篇
  1971年   1篇
  1969年   1篇
  1966年   1篇
排序方式: 共有3074条查询结果,搜索用时 15 毫秒
991.
Immobilized metal affinity chromatography (IMAC) is widely used for the production of recombinant proteins for a variety of applications; however, a number of challenges are typically encountered by researchers depending on the properties of the specific proteins in question. Here, we describe technical issues we have encountered in production of recombinant zinc finger nucleic acid-binding proteins by IMAC intended for detailed and accurate in vitro analysis. The process encountered leading to a modified IMAC protocol for effective production of high-purity, native zinc finger nucleic acid-binding proteins is described in detail. The parameters with respect to solubility, lysis and redox conditions, removal of residual metal ions with chelating agents, and renaturation in the presence of divalent metal cations are described. These procedures have been extended to production of a wide array of RNA-binding proteins in our laboratory and would be relevant to a number of protein purification applications.  相似文献   
992.
During cytokinesis in Escherichia coli, the peptidoglycan (PG) layer produced by the divisome must be split to promote cell separation. Septal PG splitting is mediated by the amidases: AmiA, AmiB, and AmiC. To efficiently hydrolyze PG, the amidases must be activated by LytM domain factors. EnvC specifically activates AmiA and AmiB, while NlpD specifically activates AmiC. Here, we used an exportable, superfolding variant of green fluorescent protein (GFP) to demonstrate that AmiB, like its paralog AmiC, is recruited to the division site by an N-terminal targeting domain. The results of colocalization experiments indicate that EnvC is recruited to the division site well before its cognate amidase AmiB. Moreover, we show that EnvC and AmiB have differential FtsN requirements for their localization. EnvC accumulates at division sites independently of this essential division protein, whereas AmiB localization is FtsN dependent. Interestingly, we also report that AmiB and EnvC are recruited to division sites independently of one another. The same is also true for AmiC and NlpD. However, unlike EnvC, we find that NlpD shares an FtsN-dependent localization with its cognate amidase. Importantly, when septal PG synthesis is blocked by cephalexin, both EnvC and NlpD are recruited to septal rings, whereas the amidases fail to localize. Our results thus suggest that the order in which cell separation amidases and their activators localize to the septal ring relative to other components serves as a fail-safe mechanism to ensure that septal PG synthesis precedes the expected burst of PG hydrolysis at the division site, accompanied by amidase recruitment.  相似文献   
993.
Although there may be no true language universals, it is nonetheless possible to discern several family resemblance patterns across the languages of the world. Recent work on the cultural evolution of language indicates the source of these patterns is unlikely to be an innate universal grammar evolved through biological adaptations for arbitrary linguistic features. Instead, it has been suggested that the patterns of resemblance emerge because language has been shaped by the brain, with individual languages representing different but partially overlapping solutions to the same set of nonlinguistic constraints. Here, we use computational simulations to investigate whether biological adaptation for functional features of language, deriving from cognitive and communicative constraints, may nonetheless be possible alongside rapid cultural evolution. Specifically, we focus on the Baldwin effect as an evolutionary mechanism by which previously learned linguistic features might become innate through natural selection across many generations of language users. The results indicate that cultural evolution of language does not necessarily prevent functional features of language from becoming genetically fixed, thus potentially providing a particularly informative source of constraints on cross-linguistic resemblance patterns.  相似文献   
994.
Our goal was to gain a better understanding of the contribution of hydrophobic interactions to protein stability. We measured the change in conformational stability, Δ(ΔG), for hydrophobic mutants of four proteins: villin headpiece subdomain (VHP) with 36 residues, a surface protein from Borrelia burgdorferi (VlsE) with 341 residues, and two proteins previously studied in our laboratory, ribonucleases Sa and T1. We compared our results with those of previous studies and reached the following conclusions: (1) Hydrophobic interactions contribute less to the stability of a small protein, VHP (0.6 ± 0.3 kcal/mol per -CH2- group), than to the stability of a large protein, VlsE (1.6 ± 0.3 kcal/mol per -CH2- group). (2) Hydrophobic interactions make the major contribution to the stability of VHP (40 kcal/mol) and the major contributors are (in kilocalories per mole) Phe18 (3.9), Met13 (3.1), Phe7 (2.9), Phe11 (2.7), and Leu21 (2.7). (3) Based on the Δ(ΔG) values for 148 hydrophobic mutants in 13 proteins, burying a -CH2- group on folding contributes, on average, 1.1 ± 0.5 kcal/mol to protein stability. (4) The experimental Δ(ΔG) values for aliphatic side chains (Ala, Val, Ile, and Leu) are in good agreement with their ΔGtr values from water to cyclohexane. (5) For 22 proteins with 36 to 534 residues, hydrophobic interactions contribute 60 ± 4% and hydrogen bonds contribute 40 ± 4% to protein stability. (6) Conformational entropy contributes about 2.4 kcal/mol per residue to protein instability. The globular conformation of proteins is stabilized predominantly by hydrophobic interactions.  相似文献   
995.
Shales play an important role in many earth system processes including coastal erosion, and they form the foundations of many engineering structures. The geobiology of the interior of pyrite-containing receding shale cliffs on the coast of northeast England was examined. The surface of the weathered shales was characterised by a thin layer of disordered authigenic iron oxyhydroxides and localised acicular, platy and aggregated gypsum, which was characterised by Raman spectroscopy, XAS and SEM. These chemical changes are likely to play an important role in causing rock weakening along fractures at the micron scale, which ultimately lead to coastal retreat at the larger scale. The surface of the shale hosts a novel, low-diversity microbial community. The bacterial community was dominated by Proteobacteria, with phylotypes closely associating with Methylocella and other members of the ??-subdivision. The second largest phylogenetic group corresponded to Nitrospira. The archaeal 16S rRNA phylotypes were dominated by a single group of sequences that matched phylotypes reported from South African gold mines and possessed ammonia monooxygenase (amoA) genes. Both the phylogenetic and the mineral data show that acidic microenvironments play an important role in shale weathering, but the shale has a higher microbial diversity than previously described pyritic acid mine drainage sites. The presence of a potentially biogeochemically active microbial population on the rock surface suggests that microorganisms may contribute to early events of shale degradation and coastal erosion.  相似文献   
996.
Understanding the relationship of the size and shape of an organism to the size, shape, and number of its constituent cells is a basic problem in biology; however, numerous studies indicate that the relationship is complex and often nonintuitive. To investigate this problem, we used a system for the inducible expression of genes involved in the G1/S transition of the plant cell cycle and analyzed the outcome on leaf shape. By combining a careful developmental staging with a quantitative analysis of the temporal and spatial response of cell division pattern and leaf shape to these manipulations, we found that changes in cell division frequency occurred much later than the observed changes in leaf shape. These data indicate that altered cell division frequency cannot be causally involved in the observed change of shape. Rather, a shift to a smaller cell size as a result of the genetic manipulations performed correlated with the formation of a smoother leaf perimeter, i.e. appeared to be the primary cellular driver influencing form. These data are discussed in the context of the relationship of cell division, growth, and leaf size and shape.  相似文献   
997.
Understanding the mechanisms responsible for divergence and specialization of pathogens on different hosts is of fundamental importance, especially in the context of the emergence of new diseases via host shifts. Temporal isolation has been reported in a few plants and parasites, but is probably one of the least studied speciation processes. We studied whether temporal isolation could be responsible for the maintenance of genetic differentiation among sympatric populations of Ampelomyces, widespread intracellular mycoparasites of powdery mildew fungi, themselves plant pathogens. The timing of transmission of Ampelomyces depends on the life cycles of the powdery mildew species they parasitize. Internal transcribed spacer sequences and microsatellite markers showed that Ampelomyces populations found in apple powdery mildew (Podosphaera leucotricha) were genetically highly differentiated from other Ampelomyces populations sampled from several other powdery mildew species across Europe, infecting plant hosts other than apple. While P. leucotricha starts its life cycle early in spring, and the main apple powdery mildew epidemics occur before summer, the fungal hosts of the other Ampelomyces cause epidemics mainly in summer and autumn. When two powdery mildew species were experimentally exposed to Ampelomyces strains naturally occurring in P. leucotricha in spring, and to strains naturally present in other mycohost species in autumn, cross‐infections always occurred. Thus, the host‐related genetic differentiation in Ampelomyces cannot be explained by narrow physiological specialization, because Ampelomyces were able to infect powdery mildew species they were unlikely to have encountered in nature, but instead appears to result from temporal isolation.  相似文献   
998.
Summary.  The taxonomy, pollination biology, conservation status, cultivation requirements of Dendroseris litoralis are discussed. A colour plate and line drawings are provided for this critically endangered plant from Juan Fernández Island, also known as Robinson Crusoe Island. The media interest generated by this plant is commented on.  相似文献   
999.
1000.
DNA methylation has been implicated in chromatin condensation and nuclear organization, especially at sites of constitutive heterochromatin. How this is mediated has not been clear. In this study, using mutant mouse embryonic stem cells completely lacking in DNA methylation, we show that DNA methylation affects nuclear organization and nucleosome structure but not chromatin compaction. In the absence of DNA methylation, there is increased nuclear clustering of pericentric heterochromatin and extensive changes in primary chromatin structure. Global levels of histone H3 methylation and acetylation are altered, and there is a decrease in the mobility of linker histones. However, the compaction of both bulk chromatin and heterochromatin, as assayed by nuclease digestion and sucrose gradient sedimentation, is unaltered by the loss of DNA methylation. This study shows how the complete loss of a major epigenetic mark can have an impact on unexpected levels of chromatin structure and nuclear organization and provides evidence for a novel link between DNA methylation and linker histones in the regulation of chromatin structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号