首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2797篇
  免费   252篇
  2024年   2篇
  2023年   16篇
  2022年   35篇
  2021年   61篇
  2020年   32篇
  2019年   36篇
  2018年   50篇
  2017年   49篇
  2016年   90篇
  2015年   152篇
  2014年   161篇
  2013年   187篇
  2012年   239篇
  2011年   204篇
  2010年   153篇
  2009年   132篇
  2008年   185篇
  2007年   160篇
  2006年   154篇
  2005年   173篇
  2004年   170篇
  2003年   148篇
  2002年   133篇
  2001年   43篇
  2000年   25篇
  1999年   27篇
  1998年   31篇
  1997年   18篇
  1996年   12篇
  1995年   15篇
  1994年   17篇
  1993年   16篇
  1992年   13篇
  1991年   13篇
  1990年   11篇
  1989年   10篇
  1988年   18篇
  1987年   9篇
  1986年   4篇
  1985年   5篇
  1984年   3篇
  1982年   10篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
  1976年   3篇
  1972年   3篇
  1971年   3篇
排序方式: 共有3049条查询结果,搜索用时 156 毫秒
41.
Weedy rice is a representative of the extensive group of feral weeds that derive from crops, but has returned to the lifestyle of a wild species. These weeds develop either from a hybridization of crops with wild relatives (exoferality), or by mutation of crops to weedy forms (endoferality). Due to the close relation of weed and crop, the methods for weed‐targeted containment are limited to date. A deeper understanding of the development of such weeds might help to design more efficient and sustainable approaches for weed management. Weedy rice poses a serious threat to rice yields worldwide. It is widely accepted that weedy rice has originated independently in different regions all over the world. However, details of its evolution have remained elusive. In the current study, we investigated the history of weedy rice in northern Italy, the most important rice‐growing area in Europe. Our approach was to analyze genes related to weedy traits (SD1, sh4, Rc) in weedy rice accessions compared to cultivars, and to integrate these results with phenotypic and physiological data, as well as historical information about rice farming in Italy. We arrive at a working model for the timeline of evolution of weedy rice in Italy indicating that both exoferality and endoferality acted as forces driving the development of the diverse weedy rice populations found in the region today. Models of weed evolution can help to predict the direction which weed development might take and to develop new, sustainable methods to control feral weeds.  相似文献   
42.
43.
Growing research effort has shown that physical enrichment (PE) can improve fish welfare and research validity. However, the inclusion of PE does not always result in positive effects and conflicting findings have highlighted the many nuances involved. Effects are known to depend on species and life stage tested, but effects may also vary with differences in the specific items used as enrichment between and within studies. Reporting fine-scale characteristics of items used as enrichment in studies may help to reveal these factors. We conducted a survey of PE-focused studies published in the last 5 years to examine the current state of methodological reporting. The survey results suggest that some aspects of enrichment are not adequately detailed. For example, the amount and dimensions of objects used as enrichment were frequently omitted. Similarly, the ecological relevance, or other justification, for enrichment items was frequently not made explicit. Focusing on ecologically relevant aspects of PE and increasing the level of detail reported in studies may benefit future work and we propose a framework with the acronym DETAILS ( D imensions, E cological rationale, T iming of enrichment, A mount, I nputs, L ighting and S ocial environment). We outline the potential importance of each of the elements of this framework with the hope it may aid in the level of reporting and standardization across studies, ultimately aiding the search for more beneficial types of PE and the development of our understanding and ability to improve the welfare of captive fish and promote more biologically relevant behaviour.  相似文献   
44.
Effective plant defense strategies rely in part on the perception of non-self determinants, so-called microbe-associated molecular patterns (MAMPs), by transmembrane pattern recognition receptors leading to MAMP-triggered immunity. Plant resistance against necrotrophic pathogens with a broad host range is complex and yet not well understood. Particularly, it is unclear if resistance to necrotrophs involves pattern recognition receptors. Here, we partially purified a novel proteinaceous elicitor called SCLEROTINIA CULTURE FILTRATE ELICITOR1 (SCFE1) from the necrotrophic fungal pathogen Sclerotinia sclerotiorum that induces typical MAMP-triggered immune responses in Arabidopsis thaliana. Analysis of natural genetic variation revealed five Arabidopsis accessions (Mt-0, Lov-1, Lov-5, Br-0, and Sq-1) that are fully insensitive to the SCFE1-containing fraction. We used a forward genetics approach and mapped the locus determining SCFE1 sensitivity to RECEPTOR-LIKE PROTEIN30 (RLP30). We also show that SCFE1-triggered immune responses engage a signaling pathway dependent on the regulatory receptor-like kinases BRASSINOSTEROID INSENSITIVE1-ASSOCIATED RECEPTOR KINASE1 (BAK1) and SUPPRESSOR OF BIR1-1/EVERSHED (SOBIR1/EVR). Mutants of RLP30, BAK1, and SOBIR1 are more susceptible to S. sclerotiorum and the related fungus Botrytis cinerea. The presence of an elicitor in S. sclerotiorum evoking MAMP-triggered immune responses and sensed by RLP30/SOBIR1/BAK1 demonstrates the relevance of MAMP-triggered immunity in resistance to necrotrophic fungi.  相似文献   
45.
Breast cancer subtype-specific molecular variations can dramatically affect patient responses to existing therapies. It is thought that differentially phosphorylated protein isoforms might be a useful prognostic biomarker of drug response in the clinic. However, the accurate detection and quantitative analysis of cancer-related protein isoforms and phospho-isoforms in tumors are limited by current technologies. Using a novel, fully automated nanocapillary electrophoresis immunoassay (NanoProTM 1000) designed to separate protein molecules based on their isoelectric point, we developed a reliable and highly sensitive assay for the detection and quantitation of AKT isoforms and phosphoforms in breast cancer. This assay enabled the measurement of activated AKT1/2/3 in breast cancer cells using protein produced from as few as 56 cells. Importantly, we were able to assign an identity for the phosphorylated S473 phosphoform of AKT1, the major form of activated AKT involved in multiple cancers, including breast, and a current focus in clinical trials for targeted intervention. The ability of our AKT assay to detect and measure AKT phosphorylation from very low amounts of total protein will allow the accurate evaluation of patient response to drugs targeting activated PI3K-AKT using scarce clinical specimens. Moreover, the capacity of this assay to detect and measure all three AKT isoforms using one single pan-specific antibody enables the study of the multiple and variable roles that these isoforms play in AKT tumorigenesis.Activation of the PI3K-AKT signaling pathway is one of the most common events in cancer (1, 2). Pathway activation can confer a number of advantages to the cancer cells, including enhanced proliferation and survival (1, 2). Multiple mechanisms exist by which the pathway may become activated, including amplification or activation of receptor tyrosine kinases (e.g. ERBB2 in breast and EGFR in lung tumors), mutation of the catalytic or regulatory subunits of PI3K (e.g. PIK3CA in colorectal and breast tumors), loss of the negative regulator PTEN (e.g. mutation in prostate and melanoma), and gain of function of AKT (e.g. amplification or mutation in breast and pancreatic tumors) (reviewed in Refs. 1 and 2).AKT represents a central node in the PI3K signaling cascade (3). AKT is recruited to the cell membrane via its pleckstrin homology domain when PI3K phosphorylates PIP2 to form PIP3 (4, 5). Following recruitment, AKT is phosphorylated by PDK1 and the rictor-mTOR complex, resulting in conformational changes and activation of the protein (58). Multiple studies have shown that the phosphorylation of AKT leads to the phosphorylation and activation of downstream effectors of the signaling pathway, such as mTOR complex 1 and S6K (reviewed in Ref. 1). The central role of this pathway in cancer is further underscored by the efforts of multiple pharmaceutical companies that have developed inhibitors against AKT as potential anti-oncogenic therapeutics (9).Despite the importance of AKT in growth and survival signaling in cancer, there are surprisingly few data that address the specific roles played in growth and survival by the multiple AKT family members (AKT-1, -2, and -3) and different phosphorylation and putative phosphorylation sites that can potentially activate the protein. Western blot analysis has been the foundation of most AKT studies, but in many cases pan-AKT antibodies have been employed that fail to distinguish between the different AKT isoforms. Recent siRNA silencing studies have indicated distinct functions for different AKT family members within a cell (10, 11). Moreover, there is evidence in breast cancer that the three isoforms exhibit different localizations and therefore must have at least partially distinct functions (12). Similarly, evidence is mounting for multiple phosphorylation sites in AKT beyond the two most studied phosphorylation events (Thr-308 and Ser-473) (58). Phosphorylation at serine and threonine residues at Thr-72 and Ser-246 may be required for the activation or regulation of kinase activity (13). The functional significance of constitutive phosphorylation of Ser-124 and Thr-450 is still unknown (14). Finally, there is evidence that phosphorylation of tyrosine residues at Tyr-315 and Tyr-326 is required for full kinase activity (15).Analysis of such phospho- and isoform-specific activation often requires complicated in-depth analyses using large quantities of proteins, purified recombinant protein, immunoprecipitation, incorporation of 32P isotopes, and/or mass spectroscopy, which makes such studies more difficult to perform and not easily adaptable to clinical specimens. Thus, better methods are required for the accurate assessment of both phosphoform and isoform usage in cells with an activated PI3K-AKT pathway and the effects of pathway inhibitors using relatively small amounts of starting material. We describe here the development of such an assay using nanocapillary-based isoelectric focusing (16). This approach allows the separation of AKT into distinct peaks that correspond to different iso- and phosphoforms using a small amount of starting material and a single pan-specific antibody. This approach should allow for more accurate determinations of isoform usage in different cell types, as well as of changes in phosphorylation states in response to pathway inhibition, including in clinical specimens.  相似文献   
46.
47.
Western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is the most destructive insect pest of corn (Zea mays L.) in the United States. The adult WCR beetles derive their nourishment from multiple sources including corn pollen and silks as well as the pollen of alternate hosts. Conversely, the corn foliage is largely neglected as a food source by WCR beetles, leading to a perception of a passive interaction between the two. We report here a novel recessive mutation of corn that was identified and named after its foliar susceptibility to corn rootworm beetles (crw1). The crw1 mutant under field conditions was exceptionally susceptible to foliar damage by WCR beetles in an age-specific manner. It exhibits pleiotropic defects on cell wall biochemistry, morphology of leaf epidermal cells and lower structural integrity via differential accumulation of cell wall bound phenolic acids. These findings indicate that crw1 is perturbed in a pathway that was not previously ascribed to WCR susceptibility, as well as implying the presence of an active mechanism(s) deterring WCR beetles from devouring corn foliage. The discovery and characterization of this mutant provides a unique opportunity for genetic analysis of interactions between maize and adult WCR beetles and identify new strategies to control the spread and invasion of this destructive pest.  相似文献   
48.
49.
Expected future cellulosic ethanol production increases the demand for biomass in the US Corn Belt. With low nutritious value, low nitrogen content, and compact biomass, maize cobs can provide a significant amount of cellulosic materials. The value of maize cobs depends on cob architecture, chemical composition, and their relation to grain yield as primary trait. Eight traits including cob volume, fractional diameters, length, weight, tissue density, and grain yield have been analyzed in this quantitative trait locus (QTL) mapping experiment to evaluate their inheritance and inter-relations. One hundred eighty-four recombinant inbred lines of the intermated B73?×?Mo17 (IBM) Syn 4 population were evaluated from an experiment carried out at three locations and analyzed using genotypic information of 1,339 public SNP markers. QTL detection was performed using (1) comparison-wise thresholds with reselection of cofactors (α?=?0.001) and (2) empirical logarithm of odds score thresholds (P?=?0.05). Several QTL with small genetic effects (R 2?=?2.9–13.4 %) were found, suggesting a complex quantitative inheritance of all traits. Increased cob tissue density was found to add value to the residual without a commensurate negative impact on grain yield and therefore enables for simultaneous selection for cob biomass and grain yield.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号