首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2792篇
  免费   249篇
  2023年   16篇
  2022年   35篇
  2021年   59篇
  2020年   34篇
  2019年   34篇
  2018年   48篇
  2017年   51篇
  2016年   88篇
  2015年   150篇
  2014年   159篇
  2013年   181篇
  2012年   231篇
  2011年   204篇
  2010年   140篇
  2009年   130篇
  2008年   183篇
  2007年   156篇
  2006年   154篇
  2005年   177篇
  2004年   173篇
  2003年   153篇
  2002年   136篇
  2001年   51篇
  2000年   27篇
  1999年   29篇
  1998年   31篇
  1997年   19篇
  1996年   11篇
  1995年   15篇
  1994年   14篇
  1993年   15篇
  1992年   17篇
  1991年   15篇
  1990年   17篇
  1989年   9篇
  1988年   16篇
  1987年   7篇
  1986年   4篇
  1985年   6篇
  1984年   5篇
  1983年   3篇
  1982年   11篇
  1980年   4篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
  1976年   3篇
  1975年   2篇
  1972年   3篇
  1968年   2篇
排序方式: 共有3041条查询结果,搜索用时 31 毫秒
991.
Shales play an important role in many earth system processes including coastal erosion, and they form the foundations of many engineering structures. The geobiology of the interior of pyrite-containing receding shale cliffs on the coast of northeast England was examined. The surface of the weathered shales was characterised by a thin layer of disordered authigenic iron oxyhydroxides and localised acicular, platy and aggregated gypsum, which was characterised by Raman spectroscopy, XAS and SEM. These chemical changes are likely to play an important role in causing rock weakening along fractures at the micron scale, which ultimately lead to coastal retreat at the larger scale. The surface of the shale hosts a novel, low-diversity microbial community. The bacterial community was dominated by Proteobacteria, with phylotypes closely associating with Methylocella and other members of the ??-subdivision. The second largest phylogenetic group corresponded to Nitrospira. The archaeal 16S rRNA phylotypes were dominated by a single group of sequences that matched phylotypes reported from South African gold mines and possessed ammonia monooxygenase (amoA) genes. Both the phylogenetic and the mineral data show that acidic microenvironments play an important role in shale weathering, but the shale has a higher microbial diversity than previously described pyritic acid mine drainage sites. The presence of a potentially biogeochemically active microbial population on the rock surface suggests that microorganisms may contribute to early events of shale degradation and coastal erosion.  相似文献   
992.
Understanding the relationship of the size and shape of an organism to the size, shape, and number of its constituent cells is a basic problem in biology; however, numerous studies indicate that the relationship is complex and often nonintuitive. To investigate this problem, we used a system for the inducible expression of genes involved in the G1/S transition of the plant cell cycle and analyzed the outcome on leaf shape. By combining a careful developmental staging with a quantitative analysis of the temporal and spatial response of cell division pattern and leaf shape to these manipulations, we found that changes in cell division frequency occurred much later than the observed changes in leaf shape. These data indicate that altered cell division frequency cannot be causally involved in the observed change of shape. Rather, a shift to a smaller cell size as a result of the genetic manipulations performed correlated with the formation of a smoother leaf perimeter, i.e. appeared to be the primary cellular driver influencing form. These data are discussed in the context of the relationship of cell division, growth, and leaf size and shape.  相似文献   
993.
Understanding the mechanisms responsible for divergence and specialization of pathogens on different hosts is of fundamental importance, especially in the context of the emergence of new diseases via host shifts. Temporal isolation has been reported in a few plants and parasites, but is probably one of the least studied speciation processes. We studied whether temporal isolation could be responsible for the maintenance of genetic differentiation among sympatric populations of Ampelomyces, widespread intracellular mycoparasites of powdery mildew fungi, themselves plant pathogens. The timing of transmission of Ampelomyces depends on the life cycles of the powdery mildew species they parasitize. Internal transcribed spacer sequences and microsatellite markers showed that Ampelomyces populations found in apple powdery mildew (Podosphaera leucotricha) were genetically highly differentiated from other Ampelomyces populations sampled from several other powdery mildew species across Europe, infecting plant hosts other than apple. While P. leucotricha starts its life cycle early in spring, and the main apple powdery mildew epidemics occur before summer, the fungal hosts of the other Ampelomyces cause epidemics mainly in summer and autumn. When two powdery mildew species were experimentally exposed to Ampelomyces strains naturally occurring in P. leucotricha in spring, and to strains naturally present in other mycohost species in autumn, cross‐infections always occurred. Thus, the host‐related genetic differentiation in Ampelomyces cannot be explained by narrow physiological specialization, because Ampelomyces were able to infect powdery mildew species they were unlikely to have encountered in nature, but instead appears to result from temporal isolation.  相似文献   
994.
Summary.  The taxonomy, pollination biology, conservation status, cultivation requirements of Dendroseris litoralis are discussed. A colour plate and line drawings are provided for this critically endangered plant from Juan Fernández Island, also known as Robinson Crusoe Island. The media interest generated by this plant is commented on.  相似文献   
995.
996.
DNA methylation has been implicated in chromatin condensation and nuclear organization, especially at sites of constitutive heterochromatin. How this is mediated has not been clear. In this study, using mutant mouse embryonic stem cells completely lacking in DNA methylation, we show that DNA methylation affects nuclear organization and nucleosome structure but not chromatin compaction. In the absence of DNA methylation, there is increased nuclear clustering of pericentric heterochromatin and extensive changes in primary chromatin structure. Global levels of histone H3 methylation and acetylation are altered, and there is a decrease in the mobility of linker histones. However, the compaction of both bulk chromatin and heterochromatin, as assayed by nuclease digestion and sucrose gradient sedimentation, is unaltered by the loss of DNA methylation. This study shows how the complete loss of a major epigenetic mark can have an impact on unexpected levels of chromatin structure and nuclear organization and provides evidence for a novel link between DNA methylation and linker histones in the regulation of chromatin structure.  相似文献   
997.
Poor protein solubility is a common problem in high-resolution structural studies, formulation of protein pharmaceuticals, and biochemical characterization of proteins. One popular strategy to improve protein solubility is to use site-directed mutagenesis to make hydrophobic to hydrophilic mutations on the protein surface. However, a systematic investigation of the relative contributions of all 20 amino acids to protein solubility has not been done. Here, 20 variants at the completely solvent-exposed position 76 of ribonuclease (RNase) Sa are made to compare the contributions of each amino acid. Stability measurements were also made for these variants, which occur at the i+1 position of a type II beta-turn. Solubility measurements in ammonium sulfate solutions were made at high positive net charge, low net charge, and high negative net charge. Surprisingly, there was a wide range of contributions to protein solubility even among the hydrophilic amino acids. The results suggest that aspartic acid, glutamic acid, and serine contribute significantly more favorably than the other hydrophilic amino acids especially at high net charge. Therefore, to increase protein solubility, asparagine, glutamine, or threonine should be replaced with aspartic acid, glutamic acid or serine.  相似文献   
998.
Encapsidation of host restriction factor APOBEC3G (A3G) into vif-deficient human immunodeficiency virus type 1 (HIV-1) blocks virus replication at least partly by C-to-U deamination of viral minus-strand DNA, resulting in G-to-A hypermutation. A3G may also inhibit HIV-1 replication by reducing viral DNA synthesis and inducing viral DNA degradation. To gain further insight into the mechanisms of viral inhibition, we examined the metabolism of A3G-exposed viral DNA. We observed that an overall 35-fold decrease in viral infectivity was accompanied by a five- to sevenfold reduction in viral DNA synthesis. Wild-type A3G induced an additional fivefold decrease in the amount of viral DNA that was integrated into the host cell genome and similarly reduced the efficiency with which HIV-1 preintegration complexes (PICs) integrated into a target DNA in vitro. The A3G C-terminal catalytic domain was required for both of these antiviral activities. Southern blotting analysis of PICs showed that A3G reduced the efficiency and specificity of primer tRNA processing and removal, resulting in viral DNA ends that are inefficient substrates for integration and plus-strand DNA transfer. However, the decrease in plus-strand DNA transfer did not account for all of the observed decrease in viral DNA synthesis associated with A3G. These novel observations suggest that HIV-1 cDNA produced in the presence of A3G exhibits defects in primer tRNA processing, plus-strand DNA transfer, and integration.  相似文献   
999.
Preintegration complexes (PICs) mediate retroviral integration, and recent results indicate an important role for the inner nuclear membrane protein emerin in orienting human immunodeficiency virus type 1 (HIV-1) PICs to chromatin for integration. Two other host cell proteins, the barrier-to-autointegration factor (BAF) and lamina-associated polypeptide 2alpha (LAP2alpha), seemed to play a similar preintegrative role for Moloney murine leukemia virus (MMLV) in addition to HIV-1. In contrast, we determined efficient HIV-1 and MMLV infection of HeLa-P4 cells following potent down-regulation of emerin, BAF, or LAP2alpha protein by using short interfering RNA. Mouse embryo fibroblasts ablated for emerin protein through gene knockout support the same level of HIV-1 infection as cells derived from wild-type littermate control animals. As the expression of human emerin in mouse knockout cells fails to affect the level of infectivity achieved in its absence, we conclude that HIV-1 efficiently infects cells in the absence of emerin protein and, by extension, that emerin is not a universally important regulator of HIV-1 infectivity.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号