首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2658篇
  免费   242篇
  2023年   18篇
  2022年   38篇
  2021年   59篇
  2020年   31篇
  2019年   34篇
  2018年   47篇
  2017年   49篇
  2016年   87篇
  2015年   146篇
  2014年   156篇
  2013年   180篇
  2012年   227篇
  2011年   199篇
  2010年   138篇
  2009年   125篇
  2008年   179篇
  2007年   151篇
  2006年   147篇
  2005年   163篇
  2004年   164篇
  2003年   143篇
  2002年   130篇
  2001年   41篇
  2000年   25篇
  1999年   24篇
  1998年   29篇
  1997年   18篇
  1996年   9篇
  1995年   15篇
  1994年   14篇
  1993年   15篇
  1992年   13篇
  1991年   10篇
  1990年   10篇
  1989年   8篇
  1988年   15篇
  1987年   6篇
  1986年   3篇
  1985年   4篇
  1984年   3篇
  1982年   7篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1976年   3篇
  1975年   1篇
  1973年   1篇
  1972年   3篇
  1971年   1篇
  1969年   1篇
排序方式: 共有2900条查询结果,搜索用时 15 毫秒
241.
242.
Hess J  Goldman N 《PloS one》2011,6(8):e22783
Phylogenomic approaches to the resolution of inter-species relationships have become well established in recent years. Often these involve concatenation of many orthologous genes found in the respective genomes followed by analysis using standard phylogenetic models. Genome-scale data promise increased resolution by minimising sampling error, yet are associated with well-known but often inappropriately addressed caveats arising through data heterogeneity and model violation. These can lead to the reconstruction of highly-supported but incorrect topologies. With the aim of obtaining a species tree for 18 species within the ascomycetous yeasts, we have investigated the use of appropriate evolutionary models to address inter-gene heterogeneities and the scalability and validity of supermatrix analysis as the phylogenetic problem becomes more difficult and the number of genes analysed approaches truly phylogenomic dimensions. We have extended a widely-known early phylogenomic study of yeasts by adding additional species to increase diversity and augmenting the number of genes under analysis. We have investigated sophisticated maximum likelihood analyses, considering not only a concatenated version of the data but also partitioned models where each gene constitutes a partition and parameters are free to vary between the different partitions (thereby accounting for variation in the evolutionary processes at different loci). We find considerable increases in likelihood using these complex models, arguing for the need for appropriate models when analyzing phylogenomic data. Using these methods, we were able to reconstruct a well-supported tree for 18 ascomycetous yeasts spanning about 250 million years of evolution.  相似文献   
243.
The reaction of a pentane-2,4-dionate salt with dimethyldichlorosilane yields the pyrylium salt, 2,4-dimethyl-6-(2′-hydroxy-1′-propenyl)pyrylium chloride. The trifluoromethyl analogue yields the corresponding neutral pyranylidene complex, the structure of which was established by a variety of NMR techniques. A mechanistic rationale is proposed which accounts not only for these results but also for the isomeric products obtained by reaction of acetylacetone with MoOCl4 and WOCl4.  相似文献   
244.
We compared the response to hypercapnia (10%) in neurons and astrocytes among a distinct area of the retrotrapezoid nucleus (RTN), the mediocaudal RTN (mcRTN), and more intermediate and rostral RTN areas (irRTN) in medullary brain slices from neonatal rats. Hypercapnic acidosis (HA) caused pH(o) to decline from 7.45 to 7.15 and a maintained intracellular acidification of 0.15 +/- 0.02 pH unit in 90% of neurons from both areas (n = 16). HA excited 44% of mcRTN (7/16) and 38% of irRTN neurons (6/16), increasing firing rate by 167 +/- 75% (chemosensitivity index, CI, 256 +/- 72%) and 310 +/- 93% (CI 292 +/- 50%), respectively. These responses did not vary throughout neonatal development. We compared the responses of mcRTN neurons to HA (decreased pH(i) and pH(o)) and isohydric hypercapnia (IH; decreased pH(i) with constant pH(o)). Neurons excited by HA (firing rate increased 156 +/- 46%; n = 5) were similarly excited by IH (firing rate increased 167 +/- 38%; n = 5). In astrocytes from both RTN areas, HA caused a maintained intracellular acidification of 0.17 +/- 0.02 pH unit (n = 6) and a depolarization of 5 +/- 1 mV (n = 12). In summary, many neurons (42%) from the RTN are highly responsive (CI 248%) to HA; this may reflect both synaptically driven and intrinsic mechanisms of CO(2) sensitivity. Changes of pH(i) are more significant than changes of pH(o) in chemosensory signaling in RTN neurons. Finally, the lack of pH(i) regulation in response to HA suggests that astrocytes do not enhance extracellular acidification during hypercapnia in the RTN.  相似文献   
245.
Arthrobacter nicotinovorans HIM was isolated directly from an agricultural sandy dune soil 6 months after a single application of atrazine. It grew in minimal medium with atrazine as sole nitrogen source but was unable to mineralize 14C-ring-labelled atrazine. Atrazine was degraded to cyanuric acid. In addition to atrazine the bacterium degraded simazine, terbuthylazine, propazine, cyanazine and prometryn but was unable to grow on terbumeton. When added to soil, A. nicotinovorans HIM did enhance mineralization of 14C-ring-labelled atrazine and simazine, in combination with naturally occurring cyanuric acid degrading microbes resident in the soil. Using PCR, the atrazine-degradation genes atzABC were identified in A. nicotinovorans HIM. Cloning of the atzABC genes revealed significant homology (>99%) with the atrazine degradation genes of Pseudomonas sp. strain ADP. The atrazine degradation genes were held on a 96 kbp plasmid.  相似文献   
246.
The adaptive landscape is one of the most widely used metaphors in evolutionary biology. It is created by plotting fitness against phenotypes or genotypes in a given environment. The shape of the landscape is crucial in predicting the outcome of evolution: whether evolution will result in populations reaching predictable end points, or whether multiple evolutionary outcomes are more likely. In a more applied sense, the landscape will determine whether organisms will evolve to lose 'costly' resistance to antibiotics, herbicides or pesticides when the use of the control agent is stopped. Laboratory populations of microbes allow evolution to be observed in real time and, as such, provide key insights into the topology of adaptive landscapes.  相似文献   
247.
Sec1/Mun18-like (SM) proteins and soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) play central roles in intracellular membrane fusion. Diverse modes of interaction between SM proteins and SNAREs from the syntaxin family have been described. However, the observation that the N-terminal domains of Sly1 and Vps45, the SM proteins involved in traffic at the endoplasmic reticulum, the Golgi, the trans-Golgi network and the endosomes, bind to similar N-terminal sequences of their cognate syntaxins suggested a unifying theme for SM protein/SNARE interactions in most internal membrane compartments. To further understand this mechanism of SM protein/SNARE coupling, we have elucidated the structure in solution of the isolated N-terminal domain of rat Sly1 (rSly1N) and analyzed its complex with an N-terminal peptide of rat syntaxin 5 by NMR spectroscopy. Comparison with the crystal structure of a complex between Sly1p and Sed5p, their yeast homologues, shows that syntaxin 5 binding requires a striking conformational change involving a two-residue shift in the register of the C-terminal beta-strand of rSly1N. This conformational change is likely to induce a significant alteration in the overall shape of full-length rSly1 and may be critical for its function. Sequence analyses indicate that this conformational change is conserved in the Sly1 family but not in other SM proteins, and that the four families represented by the four SM proteins found in yeast (Sec1p, Sly1p, Vps45p and Vps33p) diverged early in evolution. These results suggest that there are marked distinctions between the mechanisms of action of each of the four families of SM proteins, which may have arisen from different regulatory requirements of traffic in their corresponding membrane compartments.  相似文献   
248.
During postembryonic development of insects, sensorimotor pathways, which generate specific behaviors, undergo maturational changes. It is less clear whether such pathways are typically stable, or undergo further maturation, during the adult stage. In the present study, we have examined this issue by multilevel analysis of a simple model system, the escape behavior of the cockroach, from identified synapses to behavior. We show that the escape system is highly responsive immediately after the molt to adulthood, but that the latency of escape responses was not at its typical value immediately after the molt to adult. The latency of escape behavior increased over the first 30 days of adult life, perhaps indicating maturational adjustments of the escape sensorimotor pathway. The first station in the escape circuitry is the synaptic connections between the cercal wind receptors and the giant interneurons. We measured unitary excitatory synaptic potentials between single sensory neurons and an identified giant interneuron (GI(2)). We found a decrease in the synaptic strength between identified cercal hairs from a single column and GI(2) over the first month after the adult molt. Consequently, the latency and the number of action potentials of GI(2) in response to natural stimuli increased and decreased respectively during this time. Thus, we show that both behavioral performance and the wind sensitivity of GI(2) decreased over the first month after molt. We conclude that the cockroach escape system undergoes further sensorimotor maturation over a period of 1 month, and that cellular changes correlate with, or predict, some changes in behavioral performance.  相似文献   
249.
The determination of protein-protein interactions is becoming more and more important in the molecular analysis of signal transduction chains. To this purpose the application of a manageable and simple assay in an appropriate biological system is of major concern. Bimolecular fluorescence complementation (BiFC) is a novel method to analyze protein-protein interactions in vivo. The assay is based on the observation that N- and C-terminal subfragments of the yellow-fluorescent protein (YFP) can only reconstitute a functional fluorophore when they are brought into tight contact. Thus, proteins can be fused to the YFP subfragments and the interaction of the fusion proteins can be monitored by epifluorescence microscopy. Pairs of interacting proteins were tested after transient cotransfection in etiolated mustard seedlings, which is a well characterized plant model system for light signal transduction. BiFC could be demonstrated with the F-box protein EID1 (empfindlicher im dunkelroten Licht 1) and the Arabidopsis S-phase kinase-related protein 1 (ASK1). The interaction of both proteins was specific and strictly dependent on the presence of an intact F-box domain. Our studies also demonstrate that etiolated mustard seedlings provide a versatile transient assay system to study light-induced subcellular localization events.  相似文献   
250.
Gaining a better understanding of the denatured state ensemble of proteins is important for understanding protein stability and the mechanism of protein folding. We studied the folding kinetics of ribonuclease Sa (RNase Sa) and a charge-reversal variant (D17R). The refolding kinetics are similar, but the unfolding rate constant is 10-fold greater for the variant. This suggests that charge-charge interactions in the denatured state and the transition state ensembles are more favorable in the variant than in RNase Sa, and shows that charge-charge interactions can influence the kinetics and mechanism of protein folding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号