首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1330篇
  免费   175篇
  1505篇
  2022年   10篇
  2021年   15篇
  2020年   11篇
  2019年   8篇
  2018年   8篇
  2017年   15篇
  2016年   17篇
  2015年   30篇
  2014年   33篇
  2013年   57篇
  2012年   69篇
  2011年   60篇
  2010年   42篇
  2009年   45篇
  2008年   55篇
  2007年   57篇
  2006年   59篇
  2005年   51篇
  2004年   59篇
  2003年   46篇
  2002年   51篇
  2001年   53篇
  2000年   69篇
  1999年   43篇
  1998年   17篇
  1997年   20篇
  1996年   19篇
  1995年   11篇
  1994年   21篇
  1993年   31篇
  1992年   26篇
  1991年   26篇
  1990年   25篇
  1989年   23篇
  1988年   23篇
  1987年   25篇
  1986年   19篇
  1985年   13篇
  1984年   16篇
  1983年   11篇
  1982年   8篇
  1980年   8篇
  1979年   14篇
  1978年   9篇
  1976年   8篇
  1974年   10篇
  1973年   8篇
  1972年   13篇
  1970年   8篇
  1967年   7篇
排序方式: 共有1505条查询结果,搜索用时 0 毫秒
91.
We describe an inexpensive, low-toxicity and high-yielding method for the production of pure lanosterol and dihydrolanosterol from the commercially available mixture. Optimum conditions are presented for the one-pot production of the intermediate 24,25 vicinal diol of lanosterol acetate (via either epoxidation or hydroxyhalogenation) which is readily separated from the unreacted dihydrolanosterol acetate. The lanosterol diol can then be converted to pure (>97%) lanosterol. Hypophosphorous acid was used for both the conversion of the epoxide to the diol, and as a catalyst for the hydroxyhalogenation by N-halosuccinimides of the olefinic bond.  相似文献   
92.
The activation of caspase-3 represents a critical step in the pathways leading to the biochemical and morphological changes that underlie apoptosis. Upon induction of apoptosis, the large (p17) and small (p12) subunits, comprising active caspase-3, are generated via proteolytic processing of a latent proenzyme dimer. Two copies of each individual subunit are generated to form an active heterotetramer. The tetrameric form of caspase-3 cleaves specific protein substrates within the cell, thereby producing the apoptotic phenotype. In contrast to the proenzyme, once activated in HeLa cells, caspase-3 is difficult to detect due to its rapid degradation. Interestingly, however, enzyme stability and therefore detection of active caspase-3 by immunoblot analysis can be restored by treatment of cells with a peptide-based caspase-3 selective inhibitor, suggesting that the active form can be stabilized through protein-inhibitor interaction. The heteromeric active enzyme complex is necessary for its stabilization by inhibitors, as expression of the large subunit alone is not stabilized by the presence of inhibitors. Our results show for the first time, that synthetic caspase inhibitors not only block caspase activity, but may also increase the stability of otherwise rapidly degraded mature caspase complexes. Consistent with these findings, experiments with a catalytically inactive mutant of caspase-3 show that rapid turnover is dependent on the activity of the mature enzyme. Furthermore, turnover of otherwise stable active site mutants of capase-3 is rescued by the presence of the active enzyme suggesting that turnover can be mediated in trans.  相似文献   
93.
By comparing two fully sequenced genomes of Chlamydia trachomatis using competitive hybridization on DNA microarrays, a logarithmic correlation was demonstrated between the signal ratio of the arrays and the 75-99% range of nucleotide identities of the genes. Variable genes within 14 uncharacterized strains of C. trachomatis were identified by array analysis and verified by DNA sequencing. These genes may be crucial for understanding chlamydial virulence and pathogenesis.  相似文献   
94.
95.
The CEACAM1 cell adhesion molecule is a member of the carcinoembryonic antigen family. In the mouse, four distinct isoforms are generated by alternative splicing. These encode either two or four immunoglobulin domains linked through a transmembrane domain to a cytoplasmic domain that encompasses either a short 10-amino acid tail or a longer one of 73 amino acids. Inclusion of exon 7, well conserved in evolution, generates the long cytoplasmic domain. A potential caspase recognition site in mouse, rat, and human CEACAM1-L also becomes available within the peptide encoded by exon 7. We used CEACAM1-L-transfected mouse colon carcinoma CT51 cells treated with three different apoptotic agents to study its fate during cell death. We found that CEACAM1-L is cleaved resulting in rapid degradation of most of its 8-kDa cytoplasmic domain. Caspase-mediated cleavage was demonstrated using purified recombinant caspases. The long cytoplasmic domain was cleaved specifically by caspase-3 in vitro but not by caspase-7 or -8. Moreover cleavage of CEACAM1-L in apoptotic cells was blocked by addition of a selective caspase-3 inhibitor to the cultures. Using point and deletion mutants, the conserved DQRD motif in the membrane-proximal cytoplasmic domain was identified as a caspase cleavage site. We also show that once CEACAM1-L is caspase-cleaved it becomes a stronger adhesion molecule than both the shorter and the longer expressing isoforms.  相似文献   
96.
Electrospray ionisation mass spectrometry (ES-MS) has been used to probe the coordination chemistry of metabolites such as sporidesmin D (spdD), found in the saprophytic fungus Pithomyces chartarum, and the related bisdethiobis(methylthio)gliotoxin (dimethylgliotoxin, Megtx). SpdD forms complexes of the type [spdD+M(MeCN)] and [2spdD+M]+ (M=Cu, Ag) and, at higher cone voltages, [spdD+M]+. The bis(ligand) ion [2spdD+M]+ was observed at very high cone voltages, indicating it has appreciable stability; the proposed structure of this species has a four-coordinate metal ion with two bidentate spdD ligands, coordinated through their SMe groups. 1H NMR titrations of spdD with K+, Ag+ and Cu+ provided additional evidence for complex formation with the soft metals. SpdD forms only relatively weak complexes with Zn2+, Cd2+, Co2+ and Mn2+, in keeping with the known reduced tendency of these metals to form stable thioether complexes. ES-MS studies of Megtx showed similar results to spdD, with stable adducts formed with Cu+ and Ag+ ions. The X-ray crystal structure of spdD is also reported.  相似文献   
97.
The story of T-lymphocyte subset immunophenotyping technology is reviewed on the occasion of the 20th anniversary of CD4 T-cell enumeration. Over time, immunophenotyping has evolved into precise, reliable, but complicated and expensive technology requiring fresh blood samples. The gating technologies that were universally adapted for clinical flow cytometry for the past decade relied on rapidly deteriorating morphological scatter characteristics of leukocytes. This special issue dedicated to CD4 T-cell enumeration features most of the available new options that will have a significant impact on how this technology will be implemented within the first decade of the 21st century. In a series of original publications, including the new NIH guideline for T-cell subset enumeration, contemporary gating protocols that use immunologically logical parameters are presented as part of the more reliable and affordable immunophenotyping alternative. Some of the improvements addressed here include the costs of the assays and the capacity to monitor interlaboratory and intralaboratory performances. It is clear that an effective attack on the human immunodeficiency virus (HIV) epidemic has to embrace resource-poor regions. Reducing the cost of the assay while improving reliability and durability is a move in the right direction.  相似文献   
98.
BACKGROUND: In the past decade, human immunodeficiency virus (HIV) lymphocyte immunophenotyping has evolved significantly. New fluorochromes, new multicolor reagents, enhanced instruments, and the capacity to provide absolute cell counts using the single-platform technique have all contributed to the reliability of T-cell subset measurements. In this study, four gating protocols were evaluated to select the most robust method for T-cell subset enumeration. METHODS: Peripheral blood specimens from 21 HIV(+) and 20 HIV(-) individuals were monitored up to 96 h. Aliquots of specimens were stored at room temperature and analyzed at 6 (baseline), 48, 72, and 96 h. Aliquots were stained with CD45-fluorescein isothiocyanate (FITC)/CD3PC5/CD4RD1/CD8ECD. Data analysis was performed with all four gating protocols. RESULTS: Only with fresh blood did all protocols provide similar results. From samples that were 48 h old, the choice of gating strategy had a dramatic impact on immunophenotyping results. The largest deviations from baseline values occurred at 96 h and gating protocols that included dual light scatter gates provided the greatest shift of T-cell subset values over time. The gating protocols that were based exclusively on cell lineage-specific gates gave the most robust T-cell values up to 96 h. CONCLUSION: By selecting the appropriate gating protocol, the temporal integrity of specimens can be extended up to 4 days.  相似文献   
99.
Standard hybridoma production involves the fusion of spleen cells from an immunized mouse with a non-secretory murine myeloma cell line. While this technology has provided numerous reagents that are highly valuable, demand is now increasing for monoclonal antibodies which can distinguish between closely related antigens. Induction of tolerance towards common antigens enables the recovery of high-specificity reagents that have previously proved elusive. This review details a number of strategies using either complex protein mixtures or purified proteins as tolerogens and subsequent immunization with a closely related immunogen.  相似文献   
100.
The purpose of this review is to provide information on the molecular basis of prostate cancer biology and to identify some of the targets for therapy, and highlight some potential strategies for molecular treatment. Here we give a synopsis of what we have learned regarding molecular biology of cancer in general and the directions research might take in the future in order to impact prostate cancer specifically. This work is certainly not encyclopedic in nature and we apologize in advance to colleagues whose work we were no able to include. Hope lies in learning to utilize some of these molecular workings for better prevention, diagnosis, and treatment of the most common solid organ cancer in men. Prostate cancer is a formidable disease and at current rates of diagnosis will affect one-in-six men living in the United States (Greenlee et al., 2000) Many of these men are diagnosed at an early stage of the disease and can be effectively treated by surgery or radiation. However, a significant fraction of men are diagnosed with later stage disease or progress despite early curative therapeutic attempts. Unfortunately, many of these men succumb to prostate cancer, as management options are limited and not always successful. Through an understanding of the molecular processes that occur in the development and progression of prostate cancer, novel therapies will arise that will provide longer survival, better quality of life, and a chance for cure in men afflicted with this disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号