首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   890篇
  免费   120篇
  2016年   8篇
  2015年   13篇
  2014年   17篇
  2013年   24篇
  2012年   32篇
  2011年   29篇
  2010年   18篇
  2009年   24篇
  2008年   34篇
  2007年   32篇
  2006年   33篇
  2005年   32篇
  2004年   28篇
  2003年   30篇
  2002年   18篇
  2001年   27篇
  2000年   16篇
  1999年   21篇
  1998年   19篇
  1997年   6篇
  1996年   9篇
  1995年   7篇
  1994年   11篇
  1993年   12篇
  1992年   24篇
  1991年   18篇
  1990年   22篇
  1989年   20篇
  1988年   16篇
  1987年   25篇
  1986年   21篇
  1985年   29篇
  1984年   26篇
  1983年   13篇
  1982年   14篇
  1981年   11篇
  1980年   14篇
  1979年   13篇
  1978年   17篇
  1977年   14篇
  1976年   13篇
  1974年   19篇
  1973年   6篇
  1972年   25篇
  1971年   9篇
  1970年   11篇
  1968年   8篇
  1967年   7篇
  1928年   12篇
  1927年   12篇
排序方式: 共有1010条查询结果,搜索用时 15 毫秒
101.
102.
103.
Arabidopsis (Arabidopsis thaliana) accessions provide an excellent resource to dissect the molecular basis of adaptation. We have selected 192 Arabidopsis accessions collected to represent worldwide and local variation and analyzed two adaptively important traits, flowering time and vernalization response. There was huge variation in the flowering habit of the different accessions, with no simple relationship to latitude of collection site and considerable diversity occurring within local regions. We explored the contribution to this variation from the two genes FRIGIDA (FRI) and FLOWERING LOCUS C (FLC), previously shown to be important determinants in natural variation of flowering time. A correlation of FLC expression with flowering time and vernalization was observed, but it was not as strong as anticipated due to many late-flowering/vernalization-requiring accessions being associated with low FLC expression and early-flowering accessions with high FLC expression. Sequence analysis of FRI revealed which accessions were likely to carry functional alleles, and, from comparison of flowering time with allelic type, we estimate that approximately 70% of flowering time variation can be accounted for by allelic variation of FRI. The maintenance and propagation of 20 independent nonfunctional FRI haplotypes suggest that the loss-of-function mutations can confer a strong selective advantage. Accessions with a common FRI haplotype were, in some cases, associated with very different FLC levels and wide variation in flowering time, suggesting additional variation at FLC itself or other genes regulating FLC. These data reveal how useful these Arabidopsis accessions will be in dissecting the complex molecular variation that has led to the adaptive phenotypic variation in flowering time.  相似文献   
104.
105.
106.
107.
Carbon monoxide, formate, and acetate interact with horseradish peroxidase (HRP) by binding to subsites within the active site. These ligands also bind to catalases, but their interactions are different in the two types of enzymes. Formate (notionally the "hydrated" form of carbon monoxide) is oxidized to carbon dioxide by compound I in catalase, while no such reaction is reported to occur in HRP, and the CO complex of ferrocatalase can only be obtained indirectly. Here we describe high-resolution crystal structures for HRP in its complexes with carbon monoxide and with formate, and compare these with the previously determined HRP-acetate structure [Berglund, G. I., et al. (2002) Nature 417, 463-468]. A multicrystal X-ray data collection strategy preserved the correct oxidation state of the iron during the experiments. Absorption spectra of the crystals and electron paramagnetic resonance data for the acetate and formate complexes in solution correlate electronic states with the structural results. Formate in ferric HRP and CO in ferrous HRP bind directly to the heme iron with iron-ligand distances of 2.3 and 1.8 A, respectively. CO does not bind to the ferric iron in the crystal. Acetate bound to ferric HRP stacks parallel with the heme plane with its carboxylate group 3.6 A from the heme iron, and without an intervening solvent molecule between the iron and acetate. The positions of the oxygen atoms in the bound ligands outline a potential access route for hydrogen peroxide to the iron. We propose that interactions in this channel ensure deprotonation of the proximal oxygen before binding to the heme iron.  相似文献   
108.
109.
Geographic variation in vocalizations is widespread in passerine birds, but its origins and maintenance remain unclear. One hypothesis to explain this variation is that it is associated with geographic isolation among populations and therefore should follow a vicariant pattern similar to that typically found in neutral genetic markers. Alternatively, if environmental selection strongly influences vocalizations, then genetic divergence and vocal divergence may be disassociated. This study compared genetic divergence derived from 11 microsatellite markers with a metric of phenotypic divergence derived from male bower advertisement calls. Data were obtained from 16 populations throughout the entire distribution of the satin bowerbird, an Australian wet-forest-restricted passerine. There was no relationship between call divergence and genetic divergence, similar to most other studies on birds with learned vocalizations. Genetic divergence followed a vicariant model of evolution, with the differentiation of isolated populations and isolation-by-distance among continuous populations. Previous work on Ptilonorhynchus violaceus has shown that advertisement call structure is strongly influenced by the acoustic environment of different habitats. Divergence in vocalizations among genetically related populations in different habitats indicates that satin bowerbirds match their vocalizations to the environment in which they live, despite the homogenizing influence of gene flow. In combination with convergence of vocalizations among genetically divergent populations occurring in the same habitat, this shows the overriding importance that habitat-related selection can have on the establishment and maintenance of variation in vocalizations.  相似文献   
110.
We previously reported that high micromolar concentrations of nitric oxide were able to oxidize mitochondrial cytochrome c at physiological pH, producing nitroxyl anion (Sharpe and Cooper, 1998 Biochem. J. 332, 9–19). However, the subsequent re-evaluation of the redox potential of the NO/NO- couple suggests that this reaction is thermodynamically unfavored. We now show that the oxidation is oxygen-concentration dependent and non stoichiometric. We conclude that the effect is due to an oxidant species produced during the aerobic decay of nitric oxide to nitrite and nitrate. The species is most probably nitrogen dioxide, NO2? a well-known biologically active oxidant. A simple kinetic model of NO autoxidation is able to explain the extent of cytochrome c oxidation assuming a rate constant of 3 × 106 M-1 s-1 for the reaction of NO2? with ferrocytochrome c. The importance of NO2? was confirmed by the addition of scavengers such as urate and ferrocyanide. These convert NO2? into products (urate radical and ferricyanide) that rapidly oxidize cytochrome c and hence greatly enhance the extent of oxidation observed. The present study does not support the previous hypothesis that NO and cytochrome c can generate appreciable amounts of nitroxyl ions (NO- or HNO) or of peroxynitrite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号