首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   25篇
  2022年   3篇
  2021年   5篇
  2020年   9篇
  2019年   3篇
  2018年   9篇
  2017年   3篇
  2016年   12篇
  2015年   21篇
  2014年   22篇
  2013年   29篇
  2012年   21篇
  2011年   24篇
  2010年   17篇
  2009年   16篇
  2008年   18篇
  2007年   14篇
  2006年   9篇
  2005年   12篇
  2004年   12篇
  2003年   10篇
  2002年   8篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1981年   1篇
排序方式: 共有282条查询结果,搜索用时 15 毫秒
51.
Newcastle disease virus (NDV) was isolated from an outbreak in layer chickens in the Dominican Republic in 2008. Infections with this isolate led to a 100% apparent case fatality rate in birds. Complete genome sequencing revealed that the isolate does not belong to any of the previously described NDV genotypes. Similarly, large differences were observed in the amino acid sequence of the fusion and hemagglutinin-neuraminidase proteins in comparison with all known NDV genotypes, suggesting the existence of an unknown reservoir for NDV. The work presented here represents the first complete genome sequence of NDV in the Dominican Republic.  相似文献   
52.
A phage moron is a DNA element inserted between a pair of genes in one phage genome that are adjacent in other related phage genomes. Phage morons are commonly found within phage genomes, and in a number of cases, they have been shown to mediate phenotypic changes in the bacterial host. The temperate phage HK97 encodes a moron element, gp15, within its tail morphogenesis region that is absent in most closely related phages. We show that gp15 is actively expressed from the HK97 prophage and is responsible for providing the host cell with resistance to infection by phages HK97 and HK75, independent of repressor immunity. To identify the target(s) of this gp15-mediated resistance, we created a hybrid of HK97 and the related phage HK022. This hybrid phage revealed that the tail tube or tape measure proteins likely mediate the susceptibility of HK97 to inhibition by gp15. The N terminus of gp15 is predicted with high probability to contain a single membrane-spanning helix by several transmembrane prediction programs. Consistent with this putative membrane localization, gp15 acts to prevent the entry of phage DNA into the cytoplasm, acting in a manner reminiscent of those of several previously characterized superinfection exclusion proteins. The N terminus of gp15 and its phage homologues bear sequence similarity to YebO proteins, a family of proteins of unknown function found ubiquitously in enterobacteria. The divergence of their C termini suggests that phages have co-opted this bacterial protein and subverted its activity to their advantage.  相似文献   
53.
Although p120-catenin (p120) is crucial for E-cadherin function, ablation experiments in epithelial tissues from different organ systems reveal markedly different effects. Here, we examine for the first time the consequences of p120 knockout during mouse mammary gland development. An MMTV-Cre driver was used to target knockout to the epithelium at the onset of puberty. p120 ablation was detected in approximately one-quarter of the nascent epithelium at the forth week post-partum. However, p120 null cells were essentially nonadherent, excluded from the process of terminal end bud (TEB) morphogenesis and lost altogether by week six. This elimination process caused a delay in TEB outgrowth, after which the gland developed normally from cells that had retained p120. Mechanistic studies in vitro indicate that TEB dysfunction is likely to stem from striking E-cadherin loss, failure of cell-cell adhesion and near total exclusion from the collective migration process. Our findings reveal an essential role for p120 in mammary morphogenesis.  相似文献   
54.
The polymerization of the microtubule-associated protein, tau, into insoluble filaments is a common thread in Alzheimer's disease and in a variety of frontotemporal dementias. The conformational change required for tau to transition from an extended monomeric state to a filamentous state with a high beta-sheet content involves the extreme N-terminus coming into contact with distal portions of the molecule; however, these exact interactions are incompletely understood. Here we report that a construct representing amino acids 1-196 (Tau196), which itself does not polymerize, inhibits polymerization of full-length tau (hTau40) in vitro. In addition, we trace the inhibitory effect of Tau196 to amino acids 18-42 of the construct. We also provide evidence that the N-terminal tau fragments require a specific C-terminal region of tau (residues 392-421) to exert their inhibitory effect. The fragments are most effective at inhibiting polymerization when present during the initial 5 min; they remain in the soluble fraction of the polymerization reaction, and they increase the amount of soluble hTau40. The fragments also reduce the number and average length of filaments that are formed. Taken together, these results suggest that the N-terminal tau fragments inhibit hTau40 polymerization by interacting with a specific C-terminal sequence, thereby stabilizing a soluble conformation of tau.  相似文献   
55.
Topologically, platelet factor-4 kinocidins consist of distinct N-terminal extended, C-terminal helical, and interposing gamma-core structural domains. The C-terminal alpha-helices autonomously confer direct microbicidal activity, and the synthetic antimicrobial peptide RP-1 is modeled upon these domains. In this study, the structure of RP-1 was assessed using several complementary techniques. The high-resolution structure of RP-1 was determined by NMR in anionic sodium dodecyl sulfate (SDS) and zwitterionic dodecylphosphocholine (DPC) micelles, which approximate prokaryotic and eukaryotic membranes, respectively. NMR data indicate the peptide assumes an amphipathic alpha-helical backbone conformation in both micelle environments. However, small differences were observed in the side-chain orientations of lysine, tyrosine, and phenylalanine residues in SDS versus DPC environments. NMR experiments with a paramagnetic probe indicated differences in positioning of the peptide within the two micelle types. Molecular dynamics (MD) simulations of the peptide in both micelle types were also performed to add insight into the peptide/micelle interactions and to assess the validity of this technique to predict the structure of peptides in complex with micelles. MD independently predicted RP-1 to interact only peripherally with the DPC micelle, leaving its spherical shape intact. In contrast, RP-1 entered deeply into and significantly distorted the SDS micelle. Overall, the experimental and MD results support a preferential specificity of RP-1 for anionic membranes over zwitterionic membranes. This specificity likely derives from differences in RP-1 interaction with distinct lipid systems, including subtle differences in side chain orientations, rather than gross changes in RP-1 structure in the two lipid environments.  相似文献   
56.

Background

Inhaled corticosteroids including fluticasone propionate (FP) are the most effective treatment for persistent-asthma. Noncompliance ranging from 20% to 80% of treated patients is associated with substantial health care costs, morbidity and fatalities. A noninvasive test to assess FP treatment compliance is needed. The major metabolite of FP is FP-17beta-carboxylic acid (FP17βCA) and is excreted in urine. This study demonstrates the development of a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay to measure FP17βCA in urine and evaluation of FP17βCA urinary elimination.

Experimental

Fluorometholone was used as the internal standard. After acetonitrile precipitation, samples were extracted with dichloromethane, washed and dried. Reconstituted extract (60 μL) was subjected to reversed-phase chromatography and positive-ion mode LC-MS/MS analysis. Assay precision, linearity, recovery and sample stability were determined. Elimination evaluation included measurement of FP17βCA in urine collected daily from human subjects before (day 1), during treatment (days 2-5; dose FP-110 μg 2 puffs/day), and following cessation of FP therapy (days 6-14; n = 4).

Results

Linear range of the FP17βCA assay was 10.3-9510 pg/mL. Limit of quantitation (LOQ) was 10.3 pg/mL and recovery ranged from 85.8% to 111.9%. Inter-assay CVs were 7.4-12.0% for FP17βCA concentrations of 11.1-5117 pg/mL. Urine FP17βCA was absent in subjects prior to FP therapy, detectable (180-1991 ng FP17βCA/g creatinine) throughout the dosing period and reached below the LOQ at 6 days after therapy cessation.

Conclusions

Measurement of FP17βCA by LC-MS/MS has acceptable analytical performance for clinical use. These data support the clinical utility of measuring FP17βCA in urine to monitor patient compliance with FP therapy.  相似文献   
57.
HIV-1 enters cells via interaction between the trimeric envelope (Env) glycoprotein gp120/gp41 and the host cell surface receptor molecule CD4. The requirement of CD4 for viral entry has rationalized the development of recombinant CD4-based proteins as competitive viral attachment inhibitors and immunotherapeutic agents. In this study, we describe a novel recombinant CD4 protein designed to bind gp120 through a targeted disulfide-exchange mechanism. According to structural models of the gp120-CD4 receptor complex, substitution of Ser60 on the CD4 domain 1 α-helix with Cys positions a thiol in proximity of the gp120 V1/V2 loop disulfide (Cys126–Cys196), satisfying the stereochemical and geometric conditions for redox exchange between CD4 Cys60 and gp120 Cys126, and the consequent formation of an interchain disulfide bond. In this study, we provide experimental evidence for this effect by describing the expression, purification, refolding, receptor binding and antiviral activity analysis of a recombinant two-domain CD4 variant containing the S60C mutation (2dCD4-S60C). We show that 2dCD4-S60C binds HIV-1 gp120 with a significantly higher affinity than wild-type protein under conditions that facilitate disulfide exchange and that this translates into a corresponding increase in the efficacy of CD4-mediated viral entry inhibition. We propose that targeted redox exchange between conserved gp120 disulfides and nucleophilic moieties positioned strategically on CD4 (or CD4-like scaffolds) conceptualizes a new strategy in the development of high affinity HIV-1 Env ligands, with important implications for therapy and vaccine development. More generally, this chalcogen substitution approach provides a general means of stabilizing receptor-ligand complexes where the structural and biophysical conditions for disulfide exchange are satisfied.  相似文献   
58.
The chronic phase of HIV infection is marked by pathological activation of the immune system, the extent of which better predicts disease progression than either plasma viral load or CD4+ T cell count. Recently, translocation of microbial products from the gastrointestinal tract has been proposed as an underlying cause of this immune activation, based on indirect evidence including the detection of microbial products and specific immune responses in the plasma of chronically HIV-infected humans or SIV-infected Asian macaques. We analyzed tissues from SIV-infected rhesus macaques (RMs) to provide direct in situ evidence for translocation of microbial constituents from the lumen of the intestine into the lamina propria and to draining and peripheral lymph nodes and liver, accompanied by local immune responses in affected tissues. In chronically SIV-infected RMs this translocation is associated with breakdown of the integrity of the epithelial barrier of the gastrointestinal (GI) tract and apparent inability of lamina propria macrophages to effectively phagocytose translocated microbial constituents. By contrast, in the chronic phase of SIV infection in sooty mangabeys, we found no evidence of epithelial barrier breakdown, no increased microbial translocation and no pathological immune activation. Because immune activation is characteristic of the chronic phase of progressive HIV/SIV infections, these findings suggest that increased microbial translocation from the GI tract, in excess of capacity to clear the translocated microbial constituents, helps drive pathological immune activation. Novel therapeutic approaches to inhibit microbial translocation and/or attenuate chronic immune activation in HIV-infected individuals may complement treatments aimed at direct suppression of viral replication.  相似文献   
59.

Background

Despite the global threat caused by arthropod-borne viruses, there is not an efficient method for screening vector populations to detect novel viral sequences. Current viral detection and surveillance methods based on culture can be costly and time consuming and are predicated on prior knowledge of the etiologic agent, as they rely on specific oligonucleotide primers or antibodies. Therefore, these techniques may be unsuitable for situations when the causative agent of an outbreak is unknown.

Methodology/Principal Findings

In this study we explored the use of high-throughput pyrosequencing for surveillance of arthropod-borne RNA viruses. Dengue virus, a member of the positive strand RNA Flavivirus family that is transmitted by several members of the Aedes genus of mosquitoes, was used as a model. Aedes aegypti mosquitoes experimentally infected with dengue virus type 1 (DENV-1) were pooled with noninfected mosquitoes to simulate samples derived from ongoing arbovirus surveillance programs. Using random-primed methods, total RNA was reverse-transcribed and resulting cDNA subjected to 454 pyrosequencing.

Conclusions/Significance

In two types of samples, one with 5 adult mosquitoes infected with DENV-1- and the other with 1 DENV-1 infected mosquito and 4 noninfected mosquitoes, we identified DENV-1 DNA sequences. DENV-1 sequences were not detected in an uninfected control pool of 5 adult mosquitoes. We calculated the proportion of the Ae. aegypti metagenome contributed by each infecting Dengue virus genome (pIP), which ranged from 2.75×10−8 to 1.08×10−7. DENV-1 RNA was sufficiently concentrated in the mosquito that its detection was feasible using current high-throughput sequencing instrumentation. We also identified some of the components of the mosquito microflora on the basis of the sequence of expressed RNA. This included members of the bacterial genera Pirellula and Asaia, various fungi, and a potentially uncharacterized mycovirus.  相似文献   
60.
Choline oxidase catalyzes the oxidation of choline to glycine betaine via two sequential flavin-linked transfers of hydride equivalents to molecular oxygen and formation of a betaine aldehyde intermediate. In the present study, choline and glycine betaine analogs were used as substrates and inhibitors for the enzyme to investigate the structural determinants that are relevant for substrate recognition and specificity. Competitive inhibition patterns with respect to choline were determined for a number of substituted amines at pH 6.5 and 25 degrees C. The Kis values for the carboxylate-containing ligands glycine betaine, N,N-dimethylglycine, and N-methylglycine increased monotonically with decreasing number of methyl groups, consistent with the trimethylammonium portion of the ligand being important for binding. In contrast, the acetate portion of glycine betaine did not contribute to binding, as suggested by lack of changes in the Kis values upon substituting glycine betaine with inhibitors containing methyl, ethyl, allyl, and 2-amino-ethyl side chains. In agreement with the inhibition data, the specificity of the enzyme for the organic substrate (kcat/Km value) decreased when N,N-dimethylethanolamine, N-methylethanolamine, and the isosteric substrate 3,3-dimethyl-1-butanol were used as substrate instead of choline; a contribution of approximately 7 kcal mol(-1) toward substrate discrimination was estimated for the interaction of the trimethylammonium portion of the substrate with the active site of choline oxidase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号