首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   259篇
  免费   25篇
  284篇
  2024年   1篇
  2023年   1篇
  2022年   3篇
  2021年   5篇
  2020年   9篇
  2019年   3篇
  2018年   9篇
  2017年   3篇
  2016年   12篇
  2015年   21篇
  2014年   22篇
  2013年   29篇
  2012年   21篇
  2011年   24篇
  2010年   17篇
  2009年   16篇
  2008年   18篇
  2007年   14篇
  2006年   9篇
  2005年   12篇
  2004年   12篇
  2003年   10篇
  2002年   8篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1981年   1篇
排序方式: 共有284条查询结果,搜索用时 0 毫秒
51.
52.
53.
HIV-1 enters cells via interaction between the trimeric envelope (Env) glycoprotein gp120/gp41 and the host cell surface receptor molecule CD4. The requirement of CD4 for viral entry has rationalized the development of recombinant CD4-based proteins as competitive viral attachment inhibitors and immunotherapeutic agents. In this study, we describe a novel recombinant CD4 protein designed to bind gp120 through a targeted disulfide-exchange mechanism. According to structural models of the gp120-CD4 receptor complex, substitution of Ser60 on the CD4 domain 1 α-helix with Cys positions a thiol in proximity of the gp120 V1/V2 loop disulfide (Cys126–Cys196), satisfying the stereochemical and geometric conditions for redox exchange between CD4 Cys60 and gp120 Cys126, and the consequent formation of an interchain disulfide bond. In this study, we provide experimental evidence for this effect by describing the expression, purification, refolding, receptor binding and antiviral activity analysis of a recombinant two-domain CD4 variant containing the S60C mutation (2dCD4-S60C). We show that 2dCD4-S60C binds HIV-1 gp120 with a significantly higher affinity than wild-type protein under conditions that facilitate disulfide exchange and that this translates into a corresponding increase in the efficacy of CD4-mediated viral entry inhibition. We propose that targeted redox exchange between conserved gp120 disulfides and nucleophilic moieties positioned strategically on CD4 (or CD4-like scaffolds) conceptualizes a new strategy in the development of high affinity HIV-1 Env ligands, with important implications for therapy and vaccine development. More generally, this chalcogen substitution approach provides a general means of stabilizing receptor-ligand complexes where the structural and biophysical conditions for disulfide exchange are satisfied.  相似文献   
54.
Newcastle disease virus (NDV) was isolated from an outbreak in layer chickens in the Dominican Republic in 2008. Infections with this isolate led to a 100% apparent case fatality rate in birds. Complete genome sequencing revealed that the isolate does not belong to any of the previously described NDV genotypes. Similarly, large differences were observed in the amino acid sequence of the fusion and hemagglutinin-neuraminidase proteins in comparison with all known NDV genotypes, suggesting the existence of an unknown reservoir for NDV. The work presented here represents the first complete genome sequence of NDV in the Dominican Republic.  相似文献   
55.
A phage moron is a DNA element inserted between a pair of genes in one phage genome that are adjacent in other related phage genomes. Phage morons are commonly found within phage genomes, and in a number of cases, they have been shown to mediate phenotypic changes in the bacterial host. The temperate phage HK97 encodes a moron element, gp15, within its tail morphogenesis region that is absent in most closely related phages. We show that gp15 is actively expressed from the HK97 prophage and is responsible for providing the host cell with resistance to infection by phages HK97 and HK75, independent of repressor immunity. To identify the target(s) of this gp15-mediated resistance, we created a hybrid of HK97 and the related phage HK022. This hybrid phage revealed that the tail tube or tape measure proteins likely mediate the susceptibility of HK97 to inhibition by gp15. The N terminus of gp15 is predicted with high probability to contain a single membrane-spanning helix by several transmembrane prediction programs. Consistent with this putative membrane localization, gp15 acts to prevent the entry of phage DNA into the cytoplasm, acting in a manner reminiscent of those of several previously characterized superinfection exclusion proteins. The N terminus of gp15 and its phage homologues bear sequence similarity to YebO proteins, a family of proteins of unknown function found ubiquitously in enterobacteria. The divergence of their C termini suggests that phages have co-opted this bacterial protein and subverted its activity to their advantage.  相似文献   
56.
Topologically, platelet factor-4 kinocidins consist of distinct N-terminal extended, C-terminal helical, and interposing gamma-core structural domains. The C-terminal alpha-helices autonomously confer direct microbicidal activity, and the synthetic antimicrobial peptide RP-1 is modeled upon these domains. In this study, the structure of RP-1 was assessed using several complementary techniques. The high-resolution structure of RP-1 was determined by NMR in anionic sodium dodecyl sulfate (SDS) and zwitterionic dodecylphosphocholine (DPC) micelles, which approximate prokaryotic and eukaryotic membranes, respectively. NMR data indicate the peptide assumes an amphipathic alpha-helical backbone conformation in both micelle environments. However, small differences were observed in the side-chain orientations of lysine, tyrosine, and phenylalanine residues in SDS versus DPC environments. NMR experiments with a paramagnetic probe indicated differences in positioning of the peptide within the two micelle types. Molecular dynamics (MD) simulations of the peptide in both micelle types were also performed to add insight into the peptide/micelle interactions and to assess the validity of this technique to predict the structure of peptides in complex with micelles. MD independently predicted RP-1 to interact only peripherally with the DPC micelle, leaving its spherical shape intact. In contrast, RP-1 entered deeply into and significantly distorted the SDS micelle. Overall, the experimental and MD results support a preferential specificity of RP-1 for anionic membranes over zwitterionic membranes. This specificity likely derives from differences in RP-1 interaction with distinct lipid systems, including subtle differences in side chain orientations, rather than gross changes in RP-1 structure in the two lipid environments.  相似文献   
57.

Background

Despite the global threat caused by arthropod-borne viruses, there is not an efficient method for screening vector populations to detect novel viral sequences. Current viral detection and surveillance methods based on culture can be costly and time consuming and are predicated on prior knowledge of the etiologic agent, as they rely on specific oligonucleotide primers or antibodies. Therefore, these techniques may be unsuitable for situations when the causative agent of an outbreak is unknown.

Methodology/Principal Findings

In this study we explored the use of high-throughput pyrosequencing for surveillance of arthropod-borne RNA viruses. Dengue virus, a member of the positive strand RNA Flavivirus family that is transmitted by several members of the Aedes genus of mosquitoes, was used as a model. Aedes aegypti mosquitoes experimentally infected with dengue virus type 1 (DENV-1) were pooled with noninfected mosquitoes to simulate samples derived from ongoing arbovirus surveillance programs. Using random-primed methods, total RNA was reverse-transcribed and resulting cDNA subjected to 454 pyrosequencing.

Conclusions/Significance

In two types of samples, one with 5 adult mosquitoes infected with DENV-1- and the other with 1 DENV-1 infected mosquito and 4 noninfected mosquitoes, we identified DENV-1 DNA sequences. DENV-1 sequences were not detected in an uninfected control pool of 5 adult mosquitoes. We calculated the proportion of the Ae. aegypti metagenome contributed by each infecting Dengue virus genome (pIP), which ranged from 2.75×10−8 to 1.08×10−7. DENV-1 RNA was sufficiently concentrated in the mosquito that its detection was feasible using current high-throughput sequencing instrumentation. We also identified some of the components of the mosquito microflora on the basis of the sequence of expressed RNA. This included members of the bacterial genera Pirellula and Asaia, various fungi, and a potentially uncharacterized mycovirus.  相似文献   
58.
59.
Na-K-2Cl cotransporter-1 (NKCC) has been detected at exceptionally high levels in the gastric mucosa of several species, prompting speculation that it plays important roles in gastric secretion. To investigate this possibility, we 1) immunolocalized NKCC protein in the mouse gastric mucosa, 2) compared the volume and composition of gastric fluid from NKCC-deficient mice and their normal littermates, and 3) measured acid secretion and electrogenic ion transport by chambered mouse gastric mucosa. NKCC was localized to the basolateral margin of parietal cells, mucous neck cells, and antral base cells. In NKCC-deficient mice, gastric secretions of Na+, K+, Cl-, fluid, and pepsinogen were markedly impaired, whereas secretion of acid was normal. After stimulation with forskolin or 8-bromo-cAMP, chambered corpus mucosa vigorously secreted acid, and this was accompanied by an increase in transmucosal electrical current. Inhibition of NKCC with bumetanide reduced current to resting levels but had no effect on acid output. Although prominent pathways for basolateral Cl- uptake (NKCC) and apical Cl- exit [cystic fibrosis transmembrane conductance regulator (CFTR)] were found in antral base cells, no impairment in gastric secretion was detected in CFTR-deficient mice. Our results establish that NKCC contributes importantly to secretions of Na+, K+, Cl-, fluid, and pepsinogen by the gastric mucosa through a process that is electrogenic in character and independent of acid secretion. The probable source of the NKCC-dependent nonacidic electrogenic fluid secretion is the parietal cell. The observed dependence of pepsinogen secretion on NKCC supports the concept that a nonacidic secretory stream elaborated from parietal cells facilitates flushing of the proenzyme from the gastric gland lumen.  相似文献   
60.
Diseases threaten the structure and function of marine ecosystems and are contributing to the global decline of coral reefs. We currently lack an understanding of how climate change stressors, such as ocean acidification (OA) and warming, may simultaneously affect coral reef disease dynamics, particularly diseases threatening key reef-building organisms, for example crustose coralline algae (CCA). Here, we use coralline fungal disease (CFD), a previously described CCA disease from the Pacific, to examine these simultaneous effects using both field observations and experimental manipulations. We identify the associated fungus as belonging to the subphylum Ustilaginomycetes and show linear lesion expansion rates on individual hosts can reach 6.5 mm per day. Further, we demonstrate for the first time, to our knowledge, that ocean-warming events could increase the frequency of CFD outbreaks on coral reefs, but that OA-induced lowering of pH may ameliorate outbreaks by slowing lesion expansion rates on individual hosts. Lowered pH may still reduce overall host survivorship, however, by reducing calcification and facilitating fungal bio-erosion. Such complex, interactive effects between simultaneous extrinsic environmental stressors on disease dynamics are important to consider if we are to accurately predict the response of coral reef communities to future climate change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号