首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   259篇
  免费   25篇
  284篇
  2024年   1篇
  2023年   1篇
  2022年   3篇
  2021年   5篇
  2020年   9篇
  2019年   3篇
  2018年   9篇
  2017年   3篇
  2016年   12篇
  2015年   21篇
  2014年   22篇
  2013年   29篇
  2012年   21篇
  2011年   24篇
  2010年   17篇
  2009年   16篇
  2008年   18篇
  2007年   14篇
  2006年   9篇
  2005年   12篇
  2004年   12篇
  2003年   10篇
  2002年   8篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1981年   1篇
排序方式: 共有284条查询结果,搜索用时 0 毫秒
41.
Uropathogenic Escherichia coli (UPEC) is the leading cause of community-acquired urinary tract infections (UTIs), with over 100 million UTIs occurring annually throughout the world. Increasing antimicrobial resistance among UPEC limits ambulatory care options, delays effective treatment, and may increase overall morbidity and mortality from complications such as urosepsis. The polysaccharide capsules of UPEC are an attractive target a therapeutic, based on their importance in defense against the host immune responses; however, the large number of antigenic types has limited their incorporation into vaccine development. The objective of this study was to identify small-molecule inhibitors of UPEC capsule biogenesis. A large-scale screening effort entailing 338,740 compounds was conducted in a cell-based, phenotypic screen for inhibition of capsule biogenesis in UPEC. The primary and concentration-response assays yielded 29 putative inhibitors of capsule biogenesis, of which 6 were selected for further studies. Secondary confirmatory assays identified two highly active agents, named DU003 and DU011, with 50% inhibitory concentrations of 1.0 µM and 0.69 µM, respectively. Confirmatory assays for capsular antigen and biochemical measurement of capsular sugars verified the inhibitory action of both compounds and demonstrated minimal toxicity and off-target effects. Serum sensitivity assays demonstrated that both compounds produced significant bacterial death upon exposure to active human serum. DU011 administration in mice provided near complete protection against a lethal systemic infection with the prototypic UPEC K1 isolate UTI89. This work has provided a conceptually new class of molecules to combat UPEC infection, and future studies will establish the molecular basis for their action along with efficacy in UTI and other UPEC infections.  相似文献   
42.
43.
44.
The phylogenetic relationships among 44 isolates representing 16 species of Stemphylium were inferred from ITS and glyceraldehyde-3-phosphate dehydrogenase (gpd) sequence data. The results generally agree with morphological species concepts. There was strong support for monophyly of the genus Stemphylium. Analysis of the gpd fragment in particular was useful for establishing well-supported relationships among the species and isolates of Stemphylium. Species of Stemphylium that appear to have lost the ability to produce a sexual state are scattered among the species with the ability to reproduce sexually (Pleospora spp.). Species that are pathogenic to alfalfa are resolved into two groups. Stemphylium botryosum and two isolates with morphological characters similar to S. globuliferum had identical sequences at both loci. These two loci in S. vesicarium, S. alfalfae and S. herbarum are nearly identical but differ from S. botryosum. The separation of S. vesicarium, S. herbarum and S. alfalfae into separate species by morphometric evidence was not supported by the molecular data. Morphological and developmental characters such as size and shape of conidia, conidiophores, and ascospores, and size and time of maturation of pseudothecia are useful for diagnosing species. However, other morphological characters such as septum development and small variations in conidial wall ornamentation are not as useful.  相似文献   
45.

Background  

The gut comprises an essential barrier that protects both invertebrate and vertebrate animals from invasion by microorganisms. Disruption of the balanced relationship between indigenous gut microbiota and their host can result in gut bacteria eliciting host responses similar to those caused by invasive pathogens. For example, ingestion of Bacillus thuringiensis by larvae of some species of susceptible Lepidoptera can result in normally benign enteric bacteria exerting pathogenic effects.  相似文献   
46.
Thermal preconditioning protocols for cardiac cells were identified which produce elevated HSP70 levels while maintaining high cell viability. Bovine aortic endothelial cells were heated with a water bath at temperatures ranging from 44 to 50 degrees C for periods of 1-30 min. Thermal stimulation protocols were determined which induce HSP70 expression levels ranging from 2.3 to 3.6 times the control while maintaining cell viabilities greater than 90%. An Arrhenius injury model fit to the cell damage data yielded values of A = 1.4 X 10(66) s(-1) and Ea = 4.1 X 10(5) J/mol. Knowledge of the injury parameters and HSP70 kinetics will enhance dosimetry guideline development for thermal stimulation of heat shock proteins expression in cardiac tissue.  相似文献   
47.
48.
49.
50.
Biological soil crusts (biocrust) are microbial communities that develop at the soil surface of drylands and play an important role in erosion control and fertility. Soil surface disturbance from a broad range of natural and human processes (e.g. fire, livestock grazing, off‐road traffic) cause significant losses in biocrust cover and associated ecosystems services. Hence, biocrust restoration is emerging as an important intervention strategy to rehabilitate degraded dryland soils. In a multistep process, we designed protocols for the establishment of “microbial nurseries” to produce photosynthetic cyanobacterial inoculum for biocrust seeding at scale. We first report on the strategy for isolation, directly from the target site, of a large culture collection of cyanobacteria that included multiple representatives of the five most common biocrust taxa. After genetic pedigreeing of these isolates, we could select those that best matched field populations genetically for scale‐up cultivation. We then developed protocols for effective cyanobacterial biomass production to obtain sufficient inoculum. This was followed by conditioning treatments (hardening off) to preacclimate this inoculum to the stressful conditions expected in the field. Finally, we show that the inoculum obtained was fit to thrive in its original soil under natural outdoor conditions if sufficient water was available. We repeated this process successfully for four sites, two in the hot Chihuanuan desert and two in the cooler Great Basin Desert, and on two textural types of soils in each. The cyanobacterial biocrust nursery approach represents a versatile, viable, and safe tool for the rehabilitation of dryland soils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号