首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11067篇
  免费   1011篇
  国内免费   5篇
  2023年   61篇
  2022年   162篇
  2021年   326篇
  2020年   156篇
  2019年   221篇
  2018年   258篇
  2017年   221篇
  2016年   327篇
  2015年   623篇
  2014年   613篇
  2013年   696篇
  2012年   936篇
  2011年   921篇
  2010年   552篇
  2009年   513篇
  2008年   668篇
  2007年   632篇
  2006年   531篇
  2005年   500篇
  2004年   492篇
  2003年   510篇
  2002年   448篇
  2001年   84篇
  2000年   56篇
  1999年   89篇
  1998年   114篇
  1997年   61篇
  1996年   65篇
  1995年   65篇
  1994年   58篇
  1993年   56篇
  1992年   55篇
  1991年   64篇
  1990年   43篇
  1989年   41篇
  1988年   38篇
  1987年   33篇
  1986年   38篇
  1985年   65篇
  1984年   48篇
  1983年   54篇
  1982年   46篇
  1981年   48篇
  1980年   38篇
  1979年   38篇
  1978年   37篇
  1977年   35篇
  1975年   29篇
  1974年   39篇
  1973年   31篇
排序方式: 共有10000条查询结果,搜索用时 328 毫秒
991.
992.
In the central nervous system, space is at a premium. This is especially true in the retina, where synapses, cells, and circuitry have evolved to maximize signal-processing capacity within a thin, optically transparent tissue. For example, at some retinal synapses, single presynaptic active zones contact multiple postsynaptic targets; some individual neurons perform completely different tasks depending on visual conditions, while others execute hundreds of circuit computations in parallel; and the retinal network adapts, at various levels, to the ever-changing visual world. Each of these features reflects efficient use of limited cellular resources to optimally encode visual information.  相似文献   
993.
Extensive networks of tertiary interactions give rise to unique, highly organized domain architectures that characterize the three-dimensional structure of large RNA molecules. Formed by stacked layers of a near-planar arrangement of contiguous coaxial helices, large RNA molecules are relatively flat in overall shape. The functional core of these molecules is stabilized by a diverse set of tertiary interaction motifs that often bring together distant regions of conserved nucleotides. Although homologous RNAs from different organisms can be structurally diverse, they adopt a structurally conserved functional core that includes preassembled active and/or substrate binding sites. These findings broaden our understanding of RNA folding and tertiary structure stabilization, illustrating how large, complex RNAs assemble into unique structures to perform recognition and catalysis.  相似文献   
994.
The measurement of (1)H transverse paramagnetic relaxation enhancement (PRE) has been used in biomolecular systems to determine long-range distance restraints and to visualize sparsely-populated transient states. The intrinsic flexibility of most nitroxide and metal-chelating paramagnetic spin-labels, however, complicates the quantitative interpretation of PREs due to delocalization of the paramagnetic center. Here, we present a novel, disulfide-linked nitroxide spin label, R1p, as an alternative to these flexible labels for PRE studies. When introduced at solvent-exposed α-helical positions in two model proteins, calmodulin (CaM) and T4 lysozyme (T4L), EPR measurements show that the R1p side chain exhibits dramatically reduced internal motion compared to the commonly used R1 spin label (generated by reacting cysteine with the spin labeling compound often referred to as MTSL). Further, only a single nitroxide position is necessary to account for the PREs arising from CaM S17R1p, while an ensemble comprising multiple conformations is necessary for those observed for CaM S17R1. Together, these observations suggest that the nitroxide adopts a single, fixed position when R1p is placed at solvent-exposed α-helical positions, greatly simplifying the interpretation of PRE data by removing the need to account for the intrinsic flexibility of the spin label.  相似文献   
995.
996.
RPP5 is the seminal example of a cytoplasmic NB-LRR receptor-like protein that confers downy mildew resistance in Arabidopsis thaliana. In this study, we describe the cloning and molecular characterization of the gene encoding ATR5(Emoy2), an avirulence protein from the downy mildew pathogen Hyaloperonospora arabidopsidis isolate Emoy2. ATR5(Emoy2) triggers defense response in host lines expressing the functional RPP5 allele from Landsberg erecta (Ler-0). ATR5(Emoy2) is embedded in a cluster with two additional ATR5-like (ATR5L) genes, most likely resulting from gene duplications. ATR5L proteins do not trigger RPP5-mediated resistance and the copy number of ATR5L genes varies among H. arabidopsidis isolates. ATR5(Emoy2) and ATR5L proteins contain a signal peptide, canonical EER motif, and an RGD motif. However, they lack the canonical translocation motif RXLR, which characterizes most oomycete effectors identified so far. The signal peptide and the N-terminal regions including the EER motif of ATR5(Emoy2) are not required to trigger an RPP5-dependent immune response. Bioinformatics screen of H. arabidopsidis Emoy2 genome revealed the presence of 173 open reading frames that potentially encode for secreted proteins similar to ATR5(Emoy2), in which they share some motifs such as EER but there is no canonical RXLR motif.  相似文献   
997.
Stavropoulos N  Young MW 《Neuron》2011,72(6):964-976
In a forward genetic screen in Drosophila, we have isolated insomniac, a mutant that severely reduces the duration and consolidation of sleep. Anatomically?restricted genetic manipulations indicate that insomniac functions within neurons to regulate sleep. insomniac expression does not oscillate in a circadian manner, and conversely, the circadian clock is intact in insomniac mutants, suggesting that insomniac regulates sleep by pathways distinct from the circadian clock. The protein encoded by insomniac is a member of the BTB/POZ superfamily, which includes many proteins that function as adaptors for the Cullin-3 (Cul3) ubiquitin ligase complex. We show that Insomniac can physically associate with Cul3, and that reduction of Cul3 activity in neurons recapitulates the insomniac phenotype. The extensive evolutionary conservation of insomniac and Cul3 suggests that protein degradation pathways may have a general role in governing the sleep and wakefulness of animals.  相似文献   
998.
The protozoan community in eleven activated sludge wastewater treatment plants (WWTPs) in the greater Dublin area has been investigated and correlated with key physio-chemical operational and effluent quality parameters. The plants represented various designs, including conventional and biological nutrient removal (BNR) systems. The aim of the study was to identify differences in ciliate community due to key design parameters including anoxic/anaerobic stages and to identify suitable bioindicator species for performance evaluation. BNR systems supported significantly different protozoan communities compared to conventional systems. Total protozoan abundance was reduced in plants with incorporated anoxic and anaerobic stages, whereas species diversity was either unaffected or increased. Plagiocampa rouxi and Holophrya discolor were tolerant to anoxic/anaerobic conditions and associated with high denitrification. Apart from process design, influent wastewater characteristics affect protozoan community structure. Aspidisca cicada was associated with low dissolved oxygen and low nitrate concentrations, while Trochilia minuta was indicative of good nitrifying conditions and good sludge settleability. Trithigmostoma cucullulus was sensitive to ammonia and phosphate and could be useful as an indicator of high effluent quality. The association rating assessment procedure of Curds and Cockburn failed to predict final effluent biological oxygen demand (BOD5) indicating the method might not be applicable to treatment systems of different designs.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号