首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11311篇
  免费   1047篇
  国内免费   7篇
  12365篇
  2023年   61篇
  2022年   162篇
  2021年   328篇
  2020年   159篇
  2019年   222篇
  2018年   263篇
  2017年   222篇
  2016年   328篇
  2015年   629篇
  2014年   620篇
  2013年   702篇
  2012年   944篇
  2011年   927篇
  2010年   554篇
  2009年   510篇
  2008年   673篇
  2007年   634篇
  2006年   539篇
  2005年   507篇
  2004年   493篇
  2003年   511篇
  2002年   446篇
  2001年   88篇
  2000年   57篇
  1999年   92篇
  1998年   120篇
  1997年   66篇
  1996年   73篇
  1995年   68篇
  1994年   61篇
  1993年   62篇
  1992年   64篇
  1991年   69篇
  1990年   62篇
  1989年   53篇
  1988年   49篇
  1987年   46篇
  1986年   44篇
  1985年   75篇
  1984年   52篇
  1983年   56篇
  1982年   48篇
  1981年   45篇
  1980年   38篇
  1979年   39篇
  1978年   41篇
  1977年   39篇
  1975年   33篇
  1974年   41篇
  1973年   33篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
901.
Urbanization causes major environmental changes globally, which can potentially homogenize biota across cities through the loss and gain of particular types of species. We examine whether urban environments consistently select for plants with particular traits and the implications of such changes on the functional composition of urban floras. We classified plant recorded in 11 cities around the globe as species that have either colonized (arrived and naturalized), persisted or been lost (local extirpation) following urbanization. We analyzed how 10 traits previously linked with plant responses to environmental conditions explained membership of these three groups, by comparing colonisers with persistent and extirpated plants through individual city‐level Bayesian models. Then, we used meta‐analysis to assess consistency of traits across urban areas. Finally, we explored several possible scenarios of functional change using these results. On average, urban colonizers had heavier seeds, unspecialised nutrient requirements, were taller and were annual species more often, especially when compared to locally extirpated plants. Common trends of functional change in urban plant communities include shifts towards taller and heavier‐seeded plants, and an increased prevalence of the short‐lived species, and plants without mutualistic nutritional strategies. Our results suggest that plant traits influence the species that succeed in urban environments worldwide. Different species use different ecological strategies to live in urban environments, as suggested by the importance of several traits that may appear as trait constellations. Plant height and seed mass were the only traits associated with both colonizer and extirpated plant status in urban environments. Based on our data, predicting colonization in urban environments may be easier than identifying extirpation‐prone plants; albeit some regional variation, colonization seems strongly driven by environmental conditions common to most cities (e.g. altered disturbance regimes), whereas extirpation may depend more on processes that vary across cities.  相似文献   
902.
903.
Over the past 5 years, massive accumulations of holopelagic species of the brown macroalga Sargassum in coastal areas of the Caribbean have created “golden tides” that threaten local biodiversity and trigger economic losses associated with beach deterioration and impact on fisheries and tourism. In 2015, the first report identifying the cause of these extreme events implicated a rare form of the holopelagic species Sargassum natans (form VIII). However, since the first mention of S. natans VIII in the 1930s, based solely on morphological characters, no molecular data have confirmed this identification. We generated full‐length mitogenomes and partial chloroplast genomes of all representative holopelagic Sargassum species, S. fluitans III and S. natans I alongside the putatively rare S. natans VIII, to demonstrate small but consistent differences between S. natans I and VIII (7 bp differences out of the 34,727). Our comparative analyses also revealed that both S. natans I and S. natans VIII share a very close phylogenetic relationship with S. fluitans III (94‐ and 96‐bp differences of 34,727). We designed novel primers that amplified regions of the cox2 and cox3 marker genes with consistent polymorphic sites that enabled differentiation between the two S. natans forms (I and VIII) from each other and both from S. fluitans III in over 150 Sargassum samples including those from the 2014 golden tide event. Despite remarkable gene synteny and sequence conservation, the three Sargassum forms differ in morphology, ecology, and distribution patterns, warranting more extensive interrogation of holopelagic Sargassum genomes as a whole.  相似文献   
904.
905.

Background

Thymocyte expressed molecule involved in selection 1 (Themis1, SwissProt accession number Q8BGW0) is the recently characterised founder member of a novel family of proteins. A second member of this family, Themis2 (Q91YX0), also known as ICB1 (Induced on contact with basement membrane 1), remains unreported at the protein level despite microarray and EST databases reporting Themis2 mRNA expression in B cells and macrophages.

Methodology/Principal Findings

Here we characterise Themis2 protein for the first time and show that it acts as a macrophage signalling scaffold, exerting a receptor-, mediator- and signalling pathway-specific effect on TLR responses in RAW 264.7 macrophages. Themis2 over-expression enhanced the LPS-induced production of TNF but not IL-6 or Cox-2, nor TNF production induced by ligands for TLR2 (PAM3) or TLR3 (poly I∶C). Moreover, LPS-induced activation of the MAP kinases ERK and p38 was enhanced in cells over-expressing Themis2 whereas the activation of JNK, IRF3 or NF-κB p65, was unaffected. Depletion of Themis2 protein by RNA inteference inhibited LPS-induced TNF production in primary human macrophages demonstrating a requirement for Themis2 in this event. Themis2 was inducibly tyrosine phosphorylated upon LPS challenge and interacted with Lyn kinase (P25911), the Rho guanine nucleotide exchange factor, Vav (P27870), and the adaptor protein Grb2 (Q60631). Mutation of either tyrosine 660 or a proline-rich sequence (PPPRPPK) simultaneously interrupted this complex and reduced by approximately 50% the capacity of Themis2 to promote LPS-induced TNF production. Finally, Themis2 protein expression was induced during macrophage development from murine bone marrow precursors and was regulated by inflammatory stimuli both in vitro and in vivo.

Conclusions/Significance

We hypothesise that Themis2 may constitute a novel, physiological control point in macrophage inflammatory responses.  相似文献   
906.
Type IV pili (T4P) are filamentous surface appendages required for tissue adherence, motility, aggregation, and transformation in a wide array of bacteria and archaea. The bundle-forming pilus (BFP) of enteropathogenic Escherichia coli (EPEC) is a prototypical T4P and confirmed virulence factor. T4P fibers are assembled by a complex biogenesis machine that extrudes pili through an outer membrane (OM) pore formed by the secretin protein. Secretins constitute a superfamily of proteins that assemble into multimers and support the transport of macromolecules by four evolutionarily ancient secretion systems: T4P, type II secretion, type III secretion, and phage assembly. Here, we determine that the lipoprotein transport pathway is not required for targeting the BfpB secretin protein of the EPEC T4P to the OM and describe the ultrastructure of the single particle averaged structures of the assembled complex by transmission electron microscopy. Furthermore, we use photoactivated localization microscopy to determine the distribution of single BfpB molecules fused to photoactivated mCherry. In contrast to findings in other T4P systems, we found that BFP components predominantly have an uneven distribution through the cell envelope and are only found at one or both poles in a minority of cells. In addition, we report that concurrent mutation of both the T4bP secretin and the retraction ATPase can result in viable cells and found that these cells display paradoxically low levels of cell envelope stress response activity. These results imply that secretins can direct their own targeting, have complex distributions and provide feedback information on the state of pilus biogenesis.  相似文献   
907.
The remarkable X-linked colour vision polymorphism observed in many New World primates is thought to be maintained by balancing selection. Behavioural tests support a hypothesis of heterozygote advantage, as heterozygous females (with trichromatic vision) exhibit foraging benefits over homozygous females and males (with dichromatic vision) when detecting ripe fruit on a background of leaves. Whilst most studies to date have examined the functional relevance of polymorphic colour vision in the context of foraging behaviour, alternative hypotheses proposed to explain the polymorphism have remained unexplored. In this study we examine colour vision polymorphism, social group composition and breeding success in wild red-bellied tamarins Saguinus labiatus. We find that the association of males and females within tamarin social groups is non-random with respect to colour vision genotype, with identified mating partners having the greatest allelic diversity. The observed distribution of alleles may be driven by inbreeding avoidance and implies an important new mechanism for maintaining colour vision polymorphism. This study also provides the first preliminary evidence that wild trichromatic females may have increased fitness compared with dichromatic counterparts, as measured by breeding success and longevity.  相似文献   
908.
Unlike other oilseeds (e.g. Arabidopsis), developing sunflower seeds do not accumulate a lot of starch and they rely on the sucrose that comes from the mother plant to synthesise lipid precursors. Between 10 and 25 days after flowering (DAF), when sunflower seeds form and complete the main period of storage lipid synthesis, the sucrose content of seeds is relatively constant. By contrast, the glucose and fructose content falls from day 20 after flowering and it is always lower than that of sucrose, with glucose being the minor sugar at the end of the seed formation. By studying the apparent kinetic parameters and the activity of glycolytic enzymes in vitro, it is evident that all the components of the glycolytic pathway are present in the crude seed extract. However, in isolated plastids important enzymatic activities are missing, such as the glyceraldehyde-3-phosphate dehydrogenase, involved in the conversion of glyceraldehyde 3-phosphate into 1,3-biphospho-glycerate, or the enolase that converts 2-phosphoglycerate into phosphoenolpyruvate. Hence, phosphoenolpyruvate or one of its derivatives, like pyruvate and malate from the cytosol, may be the primary carbon sources for lipid biosynthesis. Accordingly, the glucose-6-P imported into the plastid is likely to be used in the pentose phosphate pathway to produce the reducing power for lipid biosynthesis in the form of NADPH. Data from crude seed extracts indicate that enolase activity increased during seed formation, from 16 days after flowering, and that this activity was well correlated with the period of storage lipid synthesis. In addition, while the presence of some glycolytic enzymes increased during lipid synthesis, others decreased, remained constant, or displayed irregular temporal behaviour.  相似文献   
909.
A pathogen can readily mutate to infect new host types, but this does not guarantee successful establishment in the new habitat. What factors, then, dictate emergence success? One possibility is that the pathogen population cannot sustain itself on the new host type (i.e. host is a sink), but migration from a source population allows adaptive sustainability and eventual emergence by delivering beneficial mutations sampled from the source''s standing genetic variation. This idea is relevant regardless of whether the sink host is truly novel (host shift) or whether the sink is an existing or related, similar host population thriving under conditions unfavourable to pathogen persistence (range expansion). We predicted that sink adaptation should occur faster under range expansion than during a host shift owing to the effects of source genetic variation on pathogen adaptability in the sink. Under range expansion, source migration should benefit emergence in the sink because selection acting on source and sink populations is likely to be congruent. By contrast, during host shifts, source migration is likely to disrupt emergence in the sink owing to uncorrelated selection or performance tradeoffs across host types. We tested this hypothesis by evolving bacteriophage populations on novel host bacteria under sink conditions, while manipulating emergence via host shift versus range expansion. Controls examined sink adaptation when unevolved founding genotypes served as migrants. As predicted, adaptability was fastest under range expansion, and controls did not adapt. Large, similar and similarly timed increases in fitness were observed in the host-shift populations, despite declines in mean fitness of immigrants through time. These results suggest that source populations are the origin of mutations that drive adaptive emergence at the edge of a pathogen''s ecological or geographical range.  相似文献   
910.
MIP-T3 is a human protein found previously to associate with microtubules and the kinesin-interacting neuronal protein DISC1 (Disrupted-in-Schizophrenia 1), but whose cellular function(s) remains unknown. Here we demonstrate that the C. elegans MIP-T3 ortholog DYF-11 is an intraflagellar transport (IFT) protein that plays a critical role in assembling functional kinesin motor-IFT particle complexes. We have cloned a loss of function dyf-11 mutant in which several key components of the IFT machinery, including Kinesin-II, as well as IFT subcomplex A and B proteins, fail to enter ciliary axonemes and/or mislocalize, resulting in compromised ciliary structures and sensory functions, and abnormal lipid accumulation. Analyses in different mutant backgrounds further suggest that DYF-11 functions as a novel component of IFT subcomplex B. Consistent with an evolutionarily conserved cilia-associated role, mammalian MIP-T3 localizes to basal bodies and cilia, and zebrafish mipt3 functions synergistically with the Bardet-Biedl syndrome protein Bbs4 to ensure proper gastrulation, a key cilium- and basal body-dependent developmental process. Our findings therefore implicate MIP-T3 in a previously unknown but critical role in cilium biogenesis and further highlight the emerging role of this organelle in vertebrate development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号