首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103997篇
  免费   1326篇
  国内免费   817篇
  2023年   59篇
  2022年   112篇
  2021年   331篇
  2020年   160篇
  2019年   225篇
  2018年   12052篇
  2017年   10851篇
  2016年   7753篇
  2015年   1219篇
  2014年   905篇
  2013年   997篇
  2012年   5141篇
  2011年   13674篇
  2010年   12508篇
  2009年   8717篇
  2008年   10418篇
  2007年   11939篇
  2006年   802篇
  2005年   1013篇
  2004年   1459篇
  2003年   1529篇
  2002年   1220篇
  2001年   352篇
  2000年   222篇
  1999年   113篇
  1998年   137篇
  1997年   87篇
  1996年   82篇
  1995年   70篇
  1994年   68篇
  1993年   85篇
  1992年   78篇
  1991年   100篇
  1990年   55篇
  1989年   57篇
  1988年   62篇
  1987年   51篇
  1986年   43篇
  1985年   66篇
  1984年   57篇
  1983年   75篇
  1982年   50篇
  1981年   45篇
  1980年   38篇
  1978年   37篇
  1977年   37篇
  1975年   39篇
  1974年   37篇
  1972年   267篇
  1971年   296篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
891.
Montane cloud forests (MCFs), with their isolated nature, offer excellent opportunities to study the long-term effects of habitat fragmentation and the impacts of climate change. Quercus arbutifolia is a rare oak in MCFs of southern China and Vietnam. Its isolated populations, small population size and unique ecological niche make this species vulnerable to climate change and habitat loss. In this study, we used chloroplast (cpDNA) and nuclear (ITS) DNA sequences to investigate genetic divergence patterns and demographic history of five of the six known populations of Q. arbutifolia. Considering its small population size and fragmentation, Q. arbutifolia has unexpectedly high genetic diversity. The time since the most recent common ancestor of all cpDNA haplotypes was c. 10.25 Ma, and the rapid diversification of haplotypes occurred during the Quaternary. The maximum clade credibility chronogram of cpDNA haplotypes suggests that the DM population (Daming Mountain, Guangxi province) diverged early and rapidly became isolated from other populations. The Pearl River drainage system may have been the main geographic barrier between DM and other populations since the late Miocene. ITS data suggests that population expansion occurred during the last interglacial of the Quaternary. The combined effects of pre-Quaternary and Quaternary climatic and geological changes were the main drivers to the current genetic diversity and distribution pattern of Q. arbutifolia. Because of the high between-population genetic differentiation and high within-population genetic diversity of Q. arbutifolia, conservation efforts should be implemented for all populations, but if conservation resources are limited, populations DM, YZ (Mang Mountain, Hunan province) and ZZ (Daqin Mountain, Fujian province) should have priority.  相似文献   
892.
This paper proposes a new breeding strategy, marker-assisted introgression (MAI), to obtain lines of perennial species with a single introgressed fragment from a compatible species two generations after the interspecific hybrid. MAI allows enrichment of the genome of a species with genes from a wild or exotic relative in a short timeframe and with an intermediate step that allows a first exploration of genes/QTLs that the donor species can provide to the target crop. This method has three phases: (1) creating a large backcross one (BC1) population to select, with markers, a reduced number of individuals (15–30, called the prIL set) with a low number of introgressions; (2) phenotyping the prIL set for the traits of interest and inferring the inheritance and map position of segregating major genes/QTLs based on the known genotypes of the prILs; and (3) advancing selected lines carrying the traits of interest to a next generation of backcross or selfing to obtain individuals with a single introgression in the background of the elite commercial germplasm. The proof of concept of this strategy was implemented by using peach as the recurrent species and almond as the donor. The whole process can be done in 9–10 years as the identification of the first line with one introgression was after 5 years (2006–2011), and 4–5 additional years are needed for phenotypic evaluation of selected lines. The expansion of this method to other perennial clonally propagated crops and to other species of Prunus compatible with peach is discussed.  相似文献   
893.
894.
A great number of flavored grape varieties, of significant oenological potential, are traditionally cultivated in north-western Italy, besides the renowned “Moscato bianco” (syn. “Muscat à petits grains blancs”). Understanding their origin, besides its historical and scientific interest, would help to increase market appeal and consequently facilitate the commercial exploitation of these products. Twenty-four aromatic genotypes were investigated for their identity, kinship relations, and genetic origins through molecular markers (SSR and SNPs) supported by plant morphology and historical information. Flavored grape genotypes from other regions, possible ancestors, and reference cultivars of known pedigree were also included in the analysis. Kinship analysis used a likelihood-based approach (IBS, IBD, relatedness coefficients, and likelihood ratios) to achieve strong statistical support. The analyses revealed two possible leading genitors, in turn closely related by a parent/offspring relationship: “Moscato bianco” and “Malvasia aromatica di Parma,” a female grape cultivar that is today almost extinct. The outlined molecular and statistical approach could be applied for the investigation on the origin of ancient traditional cultivars of other vegetative propagated species.  相似文献   
895.
Cryptomeria japonica pollinosis is one of the most serious allergic diseases in Japan; this is a social problem because C. japonica is the most important Japanese forestry species. In order to reduce the amount of pollen dispersed, breeding programs using trees with male-sterile genes have been implemented. High-density linkage maps with stable ordering of markers facilitate the localization of male-sterile genes and the construction of partial linkage maps around them in order to develop markers for use in marker-assisted selection. In this study, a high-density linkage map for C. japonica with 2560 markers was constructed. The observed map length was 1266.2 cM and the mean distance between adjacent markers was 0.49 cM. Using information from this high-density map, we newly located two male-sterile genes (ms3 and ms4) on the first and fourth linkage groups, respectively, and constructed partial linkage maps around these loci. We also constructed new partial linkage maps around the ms1 and ms2 loci using additional SNP markers. The closest markers to the ms1, ms2, ms3, and ms4 male-sterile loci were estSNP04188 (1.8 cM), estSNP00695 (7.0 cM), gSNP05415 (3.1 cM), and estSNP01408 (7.0 cM) respectively. These results allowed us to develop SNP markers tightly linked to the male sterile genes for use in MAS; this will accelerate the future isolation of these genes by map-based cloning approaches.  相似文献   
896.
Ecological speciation has long been noted as a central topic in the field of evolutionary biology, and investigation into the relative importance of ecological and geographical factors is becoming increasingly emphasized. We surveyed genetic variation of 277 samples from 25 populations of nine Rhododendron species within Tsutsusi subgenus in Taiwan using simple sequence repeats of expressed sequence tags. Bayesian clustering revealed four genetic lineages: (1) the Rhododendron simsii, Rhododendron kanehirai, and Rhododendron nakaharae lineage (lineage 1); (2) the Rhododendron longiperulatum, Rhododendron breviperulatum, and Rhododendron noriakianum lineage (lineage 2); (3) the Rhododendron rubropilosum lineage (lineage 3); and (4) the Rhododendron oldhamii lineage (lineage 4). Asymmetric introgressions were found from lineage 3 into lineages 1 and 2 (introgressed lineages). Genetic admixture of non-R. oldhamii species was also revealed by a neighbor-joining tree. Variation partitioning showed that environment explained much larger portions of genetic variation than geography between non-introgressed lineages (i.e., between R. oldhamii and other lineages). However, the Mantel and partial Mantel tests and the multiple matrix regression with randomization found that isolation-by-distance played a more important role than isolation-by-environment (IBE) in contributing to genetic variation in most between lineage comparisons. Nevertheless, strong IBE was found when compared between non-introgressed lineages of R. oldhamii and R. rubropilosum, suggesting post-speciation ecological divergence. Several environmental variables, including annual mean temperature, aspect, isothermality, seasonal precipitation, slope, and soil pH, could be important ecological drivers involved in reproductive isolation between R. oldhamii and non-R. oldhamii species within the Tsutsusi subgenus.  相似文献   
897.
Fragmented populations at the edges of a species’ distribution can be highly exposed to the loss of genetic variation, unless sufficient gene flow maintains their genetic connectivity. Gene movements leading to successful establishment of external gametes (i.e. effective gene flow) into fragmented populations can solely be assessed by investigating the origin of natural regeneration. This study is focused on studying gene flow patterns in two silver fir stands in Central Apennines, where the species has a highly fragmented distribution. By using nuclear and chloroplast microsatellite markers, we investigated genetic variation, fine-scale spatial genetic structure, effective gene flow rates and large-scale connectivity characterizing both stands. Similar levels of genetic variation and low genetic differentiation between stands (F ST = 0.005) and across generations were found, coupled with low inbreeding and weak to absent SGS in the adult cohort (Sp < 0.003). On the other hand, substantial differences between the two stands in terms of gene flow rates were observed. Irrespective of the parentage approach used, higher gene flow rates were found in the stand located at the upper silver fir altitudinal limit, especially for seed-mediated gene flow (0.79 in the upper stand vs. 0.48 in the lower stand). Conversely, the lower stand was characterized by a higher reproductive dominance of local adults. Our findings suggest that, despite similar levels of genetic variation and generally high gene flow rates, different processes may be acting on the two stands, reflecting varying ecological conditions.  相似文献   
898.
Souring of oil fields during secondary oil recovery by water injection occurs mainly due to the action of sulfate-reducing bacteria (SRB) adhered to the rock surface in the vicinity of injection wells. Upflow packed-bed bioreactors have been used in petroleum microbiology because of its similarity to the oil field near the injection wells or production. However, these reactors do not realistically describe the regions near the injection wells, which are characterized by the presence of a saturated zone and a void region close to the well. In this study, the hydrodynamics of the two-compartment packing-free/packed-bed pilot bioreactor that mimics an oil reservoir was studied. The packed-free compartment was modeled using a continuous stirred tank model with mass exchange between active and stagnant zones, whereas the packed-bed compartment was modeled using a piston-dispersion-exchange model. The proposed model adequately represents the hydrodynamic of the packed-free/packed-bed bioreactor while the simulations provide important information about the characteristics of the residence time distribution (RTD) curves for different sets of model parameters. Simulations were performed to represent the control of the sulfate-reducing bacteria activity in the bioreactor with the use of molybdate in different scenarios. The simulations show that increased amounts of molybdate cause an effective inhibition of the souring sulfate-reducing bacteria activity.  相似文献   
899.
Mechanical loads which are macroscopically acting onto bony organs, are known to influence the activities of biological cells located in the pore spaces of bone, in particular so the signaling and production processes mediated by osteocytes. The exact mechanisms by which osteocytes are actually able to “feel” the mechanical loading and changes thereof, has been the subject of numerous studies, and, while several hypotheses have been brought forth over time, this topic has remained a matter of debate. Relaxation times reported in a recent experimental study of Gardinier et al. (Bone 46(4):1075–1081, 2010) strongly suggest that the lacunar pores are likely to experience, during typical physiological load cycles, not only fluid transport, but also undrained conditions. The latter entail the buildup of lacunar pore pressures, which we here quantify by means of a thorough multiscale modeling approach. In particular, the proposed model is based on classical poroelasticity theory, and able to account for multiple pore spaces. First, the model reveals distinct nonlinear dependencies of the resulting lacunar (and vascular) pore pressures on the underlying bone composition, highlighting the importance of a rigorous multiscale approach for appropriate computation of the aforementioned pore pressures. Then, the derived equations are evaluated for macroscopic (uniaxial as well as hydrostatic) mechanical loading of physiological magnitude. The resulting model-predicted pore pressures agree very well with the pressures that have been revealed, by means of in vitro studies, to be of adequate magnitude for modulating the responses of biological cells, including osteocytes. This underlines that osteocytes may respond to many types of loading stimuli at the same time, in particular so to fluid flow and hydrostatic pressure.  相似文献   
900.
A primary purpose of the lymphatic system is to transport fluid from peripheral tissues to the central venous system in order to maintain tissue–fluid balance. Failure to perform this task results in lymphedema marked by swelling of the affected limb as well as geometric remodeling and reduced contractility of the affected lymphatic vessels. The mechanical environment has been implicated in the regulation of lymphatic contractility, but it is unknown how changes in the mechanical environment are related to loss of contractile function and remodeling of the tissue. The purpose of this paper was to introduce a new theoretical framework for acute and long-term adaptations of lymphatic vessels to changes in mechanical loading. This theoretical framework combines a simplified version of a published lumped parameter model for lymphangion function and lymph transport, a published microstructurally motivated constitutive model for the active and passive mechanical behavior of isolated rat thoracic ducts, and novel models for acute mechanically mediated vasoreactive adaptations and long-term volumetric growth to simulate changes in muscle contractility and geometry of a single isolated rat thoracic duct in response to a sustained elevation in afterload. The illustrative examples highlight the potential role of the mechanical environment in the acute maintenance of contractility and long-term geometric remodeling, presumably aimed at meeting fluid flow demands while also maintaining mechanical homeostasis. Results demonstrate that contractility may adapt in response to shear stress to meet fluid flow demands and show that pressure-induced long-term geometric remodeling may attenuate these adaptations and reduce fluid flow. The modeling framework and illustrative simulations help suggest relevant experiments that are necessary to accurately quantify and predict the acute and long-term adaptations of lymphangions to altered mechanical loading.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号