首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   792篇
  免费   26篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2020年   4篇
  2019年   1篇
  2018年   11篇
  2017年   3篇
  2016年   6篇
  2015年   15篇
  2014年   20篇
  2013年   20篇
  2012年   66篇
  2011年   79篇
  2010年   28篇
  2009年   15篇
  2008年   75篇
  2007年   53篇
  2006年   67篇
  2005年   72篇
  2004年   57篇
  2003年   59篇
  2002年   29篇
  2001年   40篇
  2000年   50篇
  1999年   17篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1991年   2篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1971年   2篇
  1970年   1篇
  1969年   1篇
  1958年   1篇
  1950年   1篇
排序方式: 共有818条查询结果,搜索用时 93 毫秒
91.
Heme oxygenase-1 (HO-1) catalyzes the rate-limiting step in heme degradation releasing iron, carbon monoxide (CO), and biliverdin. We investigated subcellular localization of HO-1 using confocal laser scanning microscopy (CLSM) and the expression by Western blot in primary astroglial cells during differentiation and after exposure to glutamate (100microM). CLSM analysis of immunostained HO-1 in cultured astroglial cells during differentiation showed an increase of fluorescence between 7 and 14 days and a decrease between 14 and 21, although HO-1 peaked at 14 days it remained at high levels. The distribution of HO-1 protein undergoes modification in the various cellular compartments. Furthermore, localization of the protein in untreated astrocytes at 7 days appeared prevalently localized in the cytosol and in the perinuclear region. In contrast, at 14 and 21 days, fluorescence detection suggests that HO-1 was present also in the nucleus, and in the nucleoli. Fluorescence intensity significantly increased in glutamate-treated astrocytes during all development stages and the protein appeared in the cytosol, in the nucleus and in the nucleoli. The involvement of AMPA/Ka receptors was studied in glutamate-treated astroglial cells at 14 days by the preincubation of the cells with GYKI 52466, a specific receptor inhibitor, of AMPA/Ka receptor demonstrating the involvement of these receptors. Western blot analysis of HO-1 confirmed the CLSM results. Our results demonstrate that changes in HO-1 protein expression and localization in primary cultured astroglial cells may be part of the underlying mechanisms involved in brain development as well as in neurodegenerative diseases.  相似文献   
92.
Traumatic brain injury is a well-recognized environmental risk factor for developing Alzheimer's disease. Repetitive concussive brain injury (RCBI) exacerbates brain lipid peroxidation, accelerates amyloid (Abeta) formation and deposition, as well as cognitive impairments in Tg2576 mice. This study evaluated the effects of vitamin E on these four parameters in Tg2576 mice following RCBI. Eleven-month-old mice were randomized to receive either regular chow or chow-supplemented with vitamin E for 4 weeks, and subjected to RCBI (two injuries, 24 h apart) using a modified controlled cortical impact model of closed head injury. The same dietary regimens were maintained up to 8 weeks post-injury, when the animals were killed for biochemical and immunohistochemical analyses after behavioral evaluation. Vitamin E-treated animals showed a significant increase in brain vitamin E levels and a significant decrease in brain lipid peroxidation levels. After RBCI, compared with the group on regular chow, animals receiving vitamin E did not show the increase in Abeta peptides, and had a significant attenuation of learning deficits. This study suggests that the exacerbation of brain oxidative stress following RCBI plays a mechanistic role in accelerating Alphabeta accumulation and behavioral impairments in the Tg2576 mice.  相似文献   
93.
Human immunodeficiency virus type-1 coat glycoprotein gp120 causes delayed apoptosis in rat brain neocortex. Here, we investigated the possible role of the endocannabinoid system in this process. It is shown that gp120 causes a time-dependent increase in the activity and immunoreactivity of the anandamide (AEA)-hydrolyzing enzyme fatty acid amide hydrolase (FAAH), paralleled by increased activity of the AEA membrane transporter and decreased endogenous levels of AEA. The AEA-synthesizing phospholipase D and the AEA-binding receptors were not affected by gp120. None of the changes induced by gp120 in the cortex were induced by bovine serum albumin, nor were they observed in the hippocampus of the same animals. Also, the activity of 5-lipoxygenase, which generates AEA derivatives able to inhibit FAAH, decreased down to approximately 25% of the control activity upon gp120 treatment, due to reduced protein level ( approximately 45%). In addition, the FAAH inhibitor methyl-arachidonoyl fluorophosphonate significantly reduced gp120-induced apoptosis in rat brain neocortex, whereas selective blockers of AEA membrane transporter or of AEA-binding receptors were ineffective. Taken together, these results suggest that gp120, by activating FAAH, decreases endogenous levels of AEA, and the latter effect seems instrumental in the execution of delayed neuronal apoptosis in the brain neocortex of rats.  相似文献   
94.
The synthesis of 2-morpholinoethyl mycophenolate was realized by an enzymatic transesterification of simple esters of mycophenolic acid with 2-morpholinoethanol. Best results were achieved by a Candida antarctica lipase B (CAL B) catalyzed transesterification of ethyl mycophenolate in toluene. CAL B showed to selectively transform only the ethyl ester function leaving unreacted the other functional groups present on the substrate. By this way 2-morpholinoethyl mycophenolate was obtained in satisfactory yields from mycophenolic acid (84%).  相似文献   
95.
96.
The antiphospholipid syndrome (APS) is a severe autoimmune disease associated with recurrent thrombosis and fetal loss and characterized by the presence of circulating autoantibodies (aAbs) mainly recognizing the N‐terminal domain (DmI) of β2‐glycoprotein I (β2GpI). To possibly block anti‐β2GpI Abs activity, we synthesized the entire DmI comprising residues 1–64 of β2GpI by chemical methods. Oxidative disulfide renaturation of DmI was achieved in the presence of reduced and oxidized glutathione. The folded DmI (N‐DmI) was purified by RP‐HPLC, and its chemical identity and correct disulfide pairing (Cys4‐Cys47 and Cys32‐Cys60) were established by enzymatic peptide mass fingerprint analysis. The results of the conformational characterization, conducted by far‐ and near‐UV CD and fluorescence spectroscopy, provided strong evidence for the native‐like structure of DmI, which is also quite resistant to both Gdn‐HCl and thermal denaturation. However, the thermodynamic stability of N‐DmI at 37°C was remarkably low, in agreement with the unfolding energetics of small proteins. Of note, aAbs failed to bind to plates coated with N‐DmI in direct binding experiments. From ELISA competition experiments with plate‐immobilized β2GpI, a mean IC50 value of 8.8 μM could be estimated for N‐DmI, similar to that of the full‐length protein, IC50(β2GpI) = 6.4 μM, whereas the cysteine‐reduced and carboxamidomethylated DmI, RC‐DmI, failed to bind to anti‐β2GpI Abs. The versatility of chemical synthesis was also exploited to produce an N‐terminally biotin‐(PEG)2‐derivative of N‐DmI (Biotin‐N‐DmI) to be possibly used as a new tool in APS diagnosis. Strikingly, Biotin‐N‐DmI loaded onto a streptavidin‐coated plate selectively recognized aAbs from APS patients.  相似文献   
97.
98.
The solution structure of Escherichia coli acylphosphatase (E. coli AcP), a small enzyme catalyzing the hydrolysis of acylphosphates, was determined by (1)H and (15)N NMR and restrained modelling calculation. In analogy with the other members of AcP family, E. coli AcP shows an alpha/beta sandwich domain composed of four antiparallel and one parallel beta-strand, assembled in a five-stranded beta-sheet facing two antiparallel alpha-helices. The pairwise RMSD values calculated for the backbone atoms of E. coli and Sulfolobus solfataricus AcP, Bovine common type AcP and Horse muscle AcP are 2.18, 5.31 and 5.12 A, respectively. No significant differences are present in the active site region and the catalytic residue side chains are consistently positioned in the structures.  相似文献   
99.
The putative role of TP53 and p16(INK4A) tumor suppressor genes and Ras oncogenes in the development and progression of salivary gland neoplasias was studied in 28 cases of pleomorphic adenomas (PA), 4 cases of cystic adenocarcinomas, and 1 case of carcinoma ex-PA. Genetic and epigenetic alterations in the above genes were analyzed by Polymerase Chain Reaction/Single Strand Conformational Polymorphism (PCR/SSCP) and sequencing and by Methylation Specific-PCR (MS-PCR). Mutations in TP53 were found in 14% (4/28) of PAs and in 60% (3/5) of carcinomas. Mutations in H-Ras and K-Ras were identified in 4% (1/28) and 7% (2/28) of PAs, respectively. Only 20% (1/5) of carcinomas screened displayed mutations in K-Ras. p16(INK4A) promoter hypermethylation was found in 14% (4/28) of PAs and 100% (5/5) carcinomas. All genetic and epigenetic alterations were detected exclusively in the epithelial and transitional tumor components, and were absent in the mesenchymal parts. Our analysis suggests that TP53 mutations and p16(INK4A) promoter methylation, but not alterations in the H-Ras and K-Ras genes, might be involved in the malignant progression of PA into carcinoma.  相似文献   
100.
Although prostate carcinoma is an aggressive cancer preferentially metastasizing to the bones, many prostate tumors remain localized and confined to the prostate indefinitely. Prediction of the behavior of anatomically localized and moderately differentiated prostate tumors remains difficult because of lack of prognostic markers. Cell motility is an important step in the progression of epithelial tumor toward invasive metastatic carcinomas and changes in the expression and function of adhesion molecules contribute to the acquisition of a more malignant phenotype. Proline-rich tyrosine kinase 2 (Pyk2) is implicated in regulating the organization of actin cytoskeleton, a process critical for cell migration, mitosis, and tumor metastasis. In this report, we investigated whether Pyk2 played a role in the acquisition of an aggressive phenotype in prostate cell. Data reported here demonstrate that loss of Pyk2 kinase function results in induction of cell motility and migration in EPN cells, a line of non-transformed epithelial cells derived from human normal prostate tissue. Changes in motility and migration of prostate cells were associated with changes in the expression of several proteins involved in cell adhesion and reorganization of actin cytoskeleton. Ablation of Pyk2 kinase activity caused a dramatic decrease of the expression of E-cadherin and IRS1 and an increase of the expression of alpha5-integrin. In addition, a massive reorganization of actin cytoskeleton was observed. Our data indicate that Pyk2 plays a central role in the mechanism that regulate cell-cell and cell-substrate interaction and lack of its kinase activity induces prostate cells to acquire a malignant, migrating phenotype.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号