首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9583篇
  免费   813篇
  国内免费   1160篇
  2024年   37篇
  2023年   163篇
  2022年   437篇
  2021年   574篇
  2020年   432篇
  2019年   520篇
  2018年   471篇
  2017年   291篇
  2016年   405篇
  2015年   629篇
  2014年   748篇
  2013年   743篇
  2012年   938篇
  2011年   857篇
  2010年   471篇
  2009年   469篇
  2008年   551篇
  2007年   436篇
  2006年   390篇
  2005年   324篇
  2004年   257篇
  2003年   206篇
  2002年   153篇
  2001年   128篇
  2000年   108篇
  1999年   141篇
  1998年   86篇
  1997年   99篇
  1996年   63篇
  1995年   56篇
  1994年   50篇
  1993年   45篇
  1992年   50篇
  1991年   41篇
  1990年   41篇
  1989年   30篇
  1988年   24篇
  1987年   19篇
  1986年   27篇
  1985年   20篇
  1984年   9篇
  1983年   10篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
Three new ion-pair complexes, [4RBzDMAP]2[Cu(mnt)2] (mnt2− = maleonitriledithiolate; [4RBzDMAP]+ = 1-(4′-R-benzyl)-4-dimethylaminopyridinium, R = F(1), Cl(2) and Br(3)) were synthesized and characterized by elemental analyses, IR, UV, single crystal X-ray diffraction and magnetic measurements. The [Cu(mnt)2]2− anions and the cations stack alternately and form a 1D column via C-H···S, C-H···π or C-H···Cu interactions for 1 and 2. While the cations stack into a column though π···π or C-H···π interactions between pyridine and phenyl rings for 1 and 3. The change of the molecular topology of the counteraction when the 4-substituted group in the benzyl ring have been changed from F or Cl to Br atom, results in the difference in the crystal system, space group and the stacking mode of the cations and anions of 1, 2 and 3. Some weak hydrogen bonds between the adjacent columns further generate a 3D network structure. It is interesting that 1 and 2 exhibits antiferromagnetic coupling with θ = −2.372 K and θ = −14.732 K, while 3 shows weak ferromagnetic coupling feature with θ = 0.381 K.  相似文献   
993.
To assess the importance of model parameters in kinetic models, sensitivity analysis is generally employed to provide key measures. However, it is quite often that no information is available for a significant number of parameters in biochemical models. Therefore, the results of sensitivity analysis that heavily rely on the accuracy of parameters are largely ambiguous. In this study, we propose a computational approach to determine the relative importance of parameters controlling the performance of the circadian clock in Drosophila. While previous attempts to sensitivity analysis largely depend on the knowledge of model parameters which are generally unknown, our study depicts a consistent picture of sensitivity assessment for a large number of parameters, even when the values of these parameters are not available in vivo. The resulting parametric sensitivity analysis suggests that PER/TIM negative loop is critical to maintain the stable periodicity of the circadian clock, which is consistent to the previously experimental and computational findings. Furthermore, our analysis generates a rich hypothesis of important parameters in the circadian clock that can be further tested experimentally. This approach can also be extended to assess the sensitivity of parameters in any biochemical system where a large number of parameters have unknown values. Biotechnol. Bioeng. 2010; 105: 250–259. © 2009 Wiley Periodicals, Inc.  相似文献   
994.
Metal nanoparticle-chitosan (NPs-chitosan) bioconjugates were formed by exposure of chitosan to an aqueous solution of metal salts under thermal treatment. The metal nanoparticles that are formed strongly bound to chitosan, which encouraged us to investigate their catalytic performance. It was demonstrated that the metal NPs-chitosan bioconjugates functioned as effective catalysts for the reduction of 4-nitrophenol in the presence of NaBH4, which was monitored by means of spectrophotometry as a function of reaction time. The silver NPs-chitosan bioconjugates exhibited excellent catalytic activity and were reusable for up to seven cycles. In contrast, the gold NPs-chitosan catalyst displayed poor catalytic activity, even in the second cycle. A highlight of our approach is that chitosan simultaneously acts as an active support for the synthesis and assembly of nanoparticles, and the resultant bioconjugates bear the advantage of easy separation from the reaction medium.  相似文献   
995.
BAK is a key protein mediating mitochondrial outer membrane permeabilization; however, its behavior in the membrane is poorly understood. Here, we characterize the conformational changes in BAK and MCL-1 using detergents to mimic the membrane environment and study their interaction by in vitro pulldown experiments, size exclusion chromatography, titration calorimetry, and NMR spectroscopy. The nonionic detergent IGEPAL has little impact on the structure of MCL-1 but induces a conformational change in BAK, whereby its BH3 region is able to engage the hydrophobic groove of MCL-1. Although the zwitterionic detergent CHAPS induces only minor conformational changes in both proteins, it is still able to initiate heterodimerization. The complex of MCL-1 and BAK can be disrupted by a BID-BH3 peptide, which acts through binding to MCL-1, but a mutant peptide, BAK-BH3-L78A, with low affinity for MCL-1 failed to dissociate the complex. The mutation L78A in BAK prevented binding to MCL-1, thus demonstrating the essential role of the BH3 region of BAK in its regulation by MCL-1. Our results validate the current models for the activation of BAK and highlight the potential value of small molecule inhibitors that target MCL-1 directly.  相似文献   
996.
The function of serotonin transporters (SERTs) is related to mood regulation. Mice with deficient or reduced SERT function (SERT knockout mice) show several behavioral changes, including increased anxiety-like behavior, increased sensitivity to stress, and decreases in aggressive behavior. Some of these behavioral alterations are similar to phenotypes found in humans with short alleles of polymorphism in the 5-hydroxytryptamine (5-HT) transporter-linked promoter region (5-HTTLPR). Therefore, SERT knockout mice can be used as a tool to study 5-HTTLPR-related variations in personality and may be the etiology of affective disorders. This article focuses on the cellular and molecular alterations in SERT knockout mice, including changes in 5-HT concentrations and its metabolism, alterations in 5-HT receptors, impaired hypothalamic-pituitary-adrenal gland axis, developmental changes in the neurons and brain, and influence on other neurotransmitter transporters and receptors. It also discusses the possible relationships between these alterations and the behavioral changes in these mice. The knowledge provides the foundation for understanding the cellular and molecular mechanisms that mediate the SERT-related mood regulation, which may have significant impact on understanding the etiology of affective disorders and developing better therapeutic approaches for affective disorders.  相似文献   
997.
The developmental bacterium Myxococcus xanthus utilizes gliding motility to aggregate during the formation of multicellular fruiting bodies. The social (S) component of M. xanthus gliding motility requires at least two extracellular surface structures, type IV pili (Tfp) and the fibril polysaccharide or exopolysaccharide (EPS). Retraction of Tfp is proposed to power S motility and EPS from neighbouring cells is suggested to provide an anchor and trigger for Tfp retraction. The production of EPS in M. xanthus is regulated in part by the Dif chemosensory pathway; however, the input signal for the Dif pathway in EPS regulation remains to be uncovered. Using a genetic approach combined with quantitative and qualitative analysis, we demonstrate here that Tfp function upstream of the Dif proteins in regulating EPS production. The requirement of Tfp for the production of EPS was verified using various classes of Tfp mutants. Construction and examination of double and triple mutants indicated that mutations in dif are epistatic to those in pil. Furthermore, extracellular complementation between various Tfp and dif mutants suggests that Tfp, instead of being signals, may constitute the sensor or part of the sensor responsible for mediating signal input into the Dif pathway. We propose that S motility involves a regulatory loop in which EPS triggers Tfp retraction and Tfp provide proximity signals to the Dif pathway to modulate EPS production.  相似文献   
998.
A xylanolytic complex (xylanosome) was isolated from Streptomyces olivaceoviridis E-86 grown on corncob xylan. The isolated xylanosome exhibited a high molecular mass of approximately 3.8 x 10(7) Da (weight average) using size exclusion chromatography/multi-angle laser light scattering (SEC/MALLS), and was composed of at least 8 subunits with a mass range from 12 to 60 kDa. When a SDS-polyacrylamide gel zymogram was examined, the subunits of 47, 35, 32, and 23 kDa were found to have xylanase activity, while the 30-kDa subunit had CMCase activity. According to N-terminal sequence analyses, the 47- and 23-kDa subunits were found to be identical to the two reported xylanases, namely FXYN and GXYN, of S. olivaceoviridis E-86. Both the 35- and 32-kDa subunits were found to be truncated forms of the intact FXYN xylanase that possibly resulted from the degradation by proteases. The 15-kDa subunit consisted solely the xylan-binding domain of the FXYN xylanase. The purified xylanosome appeared to bind partially to xylan and poorly to Avicel.  相似文献   
999.
Programmed cell death (PCD) is crucial for plants during development and stress survival. OsPDCD5, an ortholog to mammalian-programmed cell death 5, was previously cloned from rice (Oryza sativa, cv Zhenxian 97A), and its overexpression can induce PCD in transgenic rice. In the present study, immunoblotting analysis revealed that the OsPDCD5 protein was widely expressed in the tassel, leaf, leaf sheath, and different parts of the stem but not in the anther. RT-PCR analysis showed that OsPDCD5 was related to the senescence of leaf and root tissues as well as the development of stem tissues. Furthermore, OsPDCD5 was up-regulated by UV-B irradiation. Calcineurin B-like interacting protein kinase 23 (OsCIPK23), which is involved in the calcineurin B-like proteins (CLBs)/CBL-interacting protein kinases (CIPKs) signaling network, was identified as interacting with OsPDCD5 by yeast two-hybrid screening and subsequently confirmed by pull-down assay in vitro. Present findings may shed light on the investigation of the biochemical function of OsPDCD5 in rice.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号