首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   165132篇
  免费   5809篇
  国内免费   5589篇
  176530篇
  2024年   154篇
  2023年   1040篇
  2022年   2401篇
  2021年   4088篇
  2020年   2632篇
  2019年   3245篇
  2018年   14144篇
  2017年   12244篇
  2016年   10224篇
  2015年   5370篇
  2014年   5839篇
  2013年   6289篇
  2012年   10992篇
  2011年   18351篇
  2010年   15200篇
  2009年   11221篇
  2008年   13246篇
  2007年   14386篇
  2006年   3168篇
  2005年   2879篇
  2004年   2910篇
  2003年   2657篇
  2002年   2175篇
  2001年   1492篇
  2000年   1382篇
  1999年   1151篇
  1998年   674篇
  1997年   679篇
  1996年   676篇
  1995年   618篇
  1994年   551篇
  1993年   405篇
  1992年   588篇
  1991年   472篇
  1990年   413篇
  1989年   289篇
  1988年   261篇
  1987年   247篇
  1986年   166篇
  1985年   193篇
  1984年   116篇
  1983年   134篇
  1982年   73篇
  1981年   58篇
  1980年   38篇
  1979年   61篇
  1974年   38篇
  1973年   34篇
  1972年   276篇
  1971年   297篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Rice LTRPK1, which encodes a member of the casein kinase I family, has been reported to be involved in root development, hormone response, and metabolic processes. Here we further show that LTRPK1 participates in stress resistance by regulating cytoskeleton rearrangement and formation of cold tolerance and adaptation. Semiquantitative RT-PCR analysis revealed enhanced expression of LTRPK1 in plants subject to low-temperature stress at 4 °C, suggesting a role in low-temperature-related cell responses and signal transduction pathways. Further analysis of LTRPK1-deficient transgenic plants showed that under low-temperature treatment, the growth rate of transgenic plant primary roots, which is commonly used as an indicator for cold stress response abilities, was less inhibited than that of control plants. Moreover, damage to the plasma membrane of root cells in LTRPK1-deficient plants was greater than that of controls as measured by relative electrical conductivity (REC). The malondialdehyde (MDA) content of LTRPK1-deficient plants also increased over that of the control, indicating increased plasma membrane permeability. Further immunofluorescence localization observations indicated that microtubules of transgenic plants subject to low temperature disassembled more rapidly, whereas the control plant microtubules in most cells of the root elongation zone kept their normal habitus, which suggested that LTRPK1-deficient plants had reduced capacity to resist low-temperature stress through regulation of microtubule assembly. These results demonstrate involvement of LTRPK1 in low-temperature stress and provide new insight for rice breeding and germplasm innovation to improve crop cold tolerance.  相似文献   
992.
Citrus is the most important tree fruit crop in the world. However, citrus production is affected by both biotic and abiotic stresses, including drought, extreme temperature, salinity, citrus canker, citrus tristeza virus, and Huanglongbing (or citrus greening), among others. These stresses can severely influence growth and development of both rootstocks and/or scions of citrus trees, thus reducing both fruit production and fruit quality. Modern advances in the tools of plant biotechnology and advances in genomics play important roles in understanding how citrus crops can cope with diseases and adverse environmental conditions. Within the last decades, much progress has been made in identifying and cloning of genes involved in resistance to biotic and abiotic stresses as well in genetic transformation of Citrus and its related genera, such as Poncirus trifoliata and Fortunella spp. In this review, we will provide information on advances and insights on genetic transformation protocols as well as availability of characterized genes involved in resistance to both abiotic and biotic stresses. This will be followed with a discussion on perspectives of future developments in this field.  相似文献   
993.
Most aerobic granule cultivation has been based on the sequencing batch reactor (SBR) and then the factors that affect aerobic granulations were developed in the SBR. However, little work has been done to cultivate aerobic granules in a continuous-flow bioreactor with simple structure that is realistic for engineering. This work is the first to cultivate aerobic granules in a continuous flow airlift fluidized bed reactor (CAFB) possesses a very simple structure and without settling time and starvation time controlling. The configuration of CAFB was the simplest continuous-flow aerobic granular bioreactor reported by now. The majority of granules could be formatted in the CAFB after 12 days cultivation. The effluent COD concentration maintained at 50 ± 10 mg/L for the variable COD loading rate of 3.5 g COD/L/d and 4.8 g COD/L/d, which confirmed that the CAFB performed good anti-shock abilities. CAFB performed good nitrification ability, however, little denitrification was found under the operating conditions of this study. The shear stress acting on the solid phase were hundreds of times stronger in the CAFB than in the SBR at the same aeration strength. It seems CAFB is very efficient for granulation due to the strong shear-force exertion, which is promising for continuous-flow aerobic granular bioreactor. Protein, positive to the hydrophobicity, was predominant in extracellular polymeric substances in the granules, and favored the granules formation in the CAFB combined with the polysaccharides. However, filamentous bulking always happened in 35 days operation of the CAFB, thus further study on the stability of this bioreactor is urgently necessary.  相似文献   
994.
Simultaneous improvement in grain yield and related traits in maize hybrids and their parents (inbred lines) requires a better knowledge of genotypic correlations between family per se performance (FP) and testcross performance (TP). Thus, to understand the genetic basis of yield-related traits in both inbred lines and their testcrosses, two F 2:3 populations (including 230 and 235 families, respectively) were evaluated for both FP and TP of eight yield-related traits in three diverse environments. Genotypic correlations between FP and TP, $ \hat{r}_{\text{g}} $ (FP, TP), were low (0–0.16) for grain yield per plant (GYPP) and kernel number per plant (KNPP) in the two populations, but relatively higher (0.32–0.69) for the other six traits with additive effects as the primary gene action. Similar results were demonstrated by the genotypic correlations between observed and predicted TP values based on quantitative trait loci positions and effects for FP, $ \hat{r}_{\text{g}} $ (M FP, Y TP). A total of 88 and 35 QTL were detected with FP and TP, respectively, across all eight traits in the two populations. However, the genotypic variances explained by the QTL detected in the cross-validation analysis were much lower than those in the whole data set for all traits. Several common QTL between FP and TP that accounted for large phenotypic variances were clustered in four genomic regions (bin 1.10, 4.05–4.06, 9.02, and 10.04), which are promising candidate loci for further map-based cloning and improvement in grain yield in maize. Compared with publicly available QTL data, these QTL were also detected in a wide range of genetic backgrounds and environments in maize. These results imply that effective selection based on FP to improve TP could be achieved for traits with prevailing additive effects.  相似文献   
995.
996.
997.
Mechanical loading can induce or antagonize the extracellular matrix (ECM) synthesis, proliferation, migration, and inflammatory responses of annulus fibrosus cells (AFCs), depending on the loading mode and level. Caveolin-1 (Cav1), the core protein of caveolae, plays an important role in cellular mechanotransduction and inflammatory responses. In the present study, we presented that AFCs demonstrated different behaviors when subjected to cyclic tensile strain (CTS) for 24 h at a magnitude of 0%, 2%, 5% and 12%, respectively. It was found that 5% CTS had positive effects on cell proliferation, migration and anabolism, while 12% CTS had the opposite effects. Besides, cells exposed to interleukin-1β stimulus exhibited an increase expression in inflammatory genes, and the expression of these genes decreased after exposure to moderate mechanical loading with 5% CTS. In addition, 5% CTS decreased the level of Cav1 and integrin β1 and exhibited anti-inflammatory effects. Moreover, the expression of integrin β1 and p-p65 increased in AFCs transfected with Cav1 plasmids. In vivo results revealed that moderate mechanical stimulation could recover the water content and morphology of the discs. In conclusion, moderate mechanical stimulation restrained Cav1-mediated signaling pathway and exhibited anti-inflammatory effects on AFCs. Together with in vivo results, this study expounds the underlying molecular mechanisms on the effect of moderate mechanical stimulation on intervertebral discs (IVDs) and may provide a new therapeutic strategy for the treatment of IVD degeneration.  相似文献   
998.
999.
Colorectal cancer (CRC) is a common disease worldwide that is strongly associated with the gut microbiota. However, little is known regarding the gut microbiota after surgical treatment. 16S rRNA gene sequencing was used to evaluate differences in gut microbiota among colorectal adenoma patients, CRC patients, CRC postoperative patients and healthy controls by comparing gut microbiota diversity, overall composition and taxonomic signature abundance. The gut microbiota of CRC patients, adenoma patients and healthy controls developed in accordance with the adenoma-carcinoma sequence, with impressive shifts in the gut microbiota before or during the development of CRC. The gut microbiota of postoperative patients and CRC patients differed significantly. Subdividing CRC postoperative patients according to the presence or absence of newly developed adenoma which based on the colonoscopy findings revealed that the gut microbiota of newly developed adenoma patients differed significantly from that of clean intestine patients and was more similar to the gut microbiota of carcinoma patients than to the gut microbiota of healthy controls. The alterations of the gut microbiota between the two groups of postoperative patients corresponded to CRC prognosis. More importantly, we used the different gut microbiota as biomarkers to distinguish postoperative patients with or without newly developed adenoma, achieving an AUC value of 0.72. These insights on the changes in the gut microbiota of CRC patients after surgical treatment may allow the use of the microbiota as non-invasive biomarkers for the diagnosis of newly developed adenomas and to help prevent cancer recurrence in postoperative patients.  相似文献   
1000.
Chronic myeloid leukemia (CML) is a lethal malignancy, and the progress toward long‐term survival has stagnated in recent decades. Pristimerin, a quinone methide triterpenoid isolated from the Celastraceae and Hippocrateaceae families, is well‐known to exert potential anticancer activities. In this study, we investigated the effects and the mechanisms of action on CML. We found that pristimerin inhibited cell proliferation of K562 CML cells by causing G1 phase arrest. Furthermore, we demonstrated that pristimerin triggered autophagy and apoptosis. Intriguingly, pristimerin‐induced cell death was restored by an autophagy inhibitor, suggesting that autophagy is cross‐linked with pristimerin‐induced apoptosis. Further studies revealed that pristimerin could produce excessive reactive oxygen species (ROS), which then induce JNK activation. These findings provide clear evidence that pristimerin might be clinical benefit to patients with CML.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号