首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4739篇
  免费   326篇
  国内免费   3篇
  5068篇
  2024年   5篇
  2023年   36篇
  2022年   88篇
  2021年   115篇
  2020年   72篇
  2019年   73篇
  2018年   132篇
  2017年   107篇
  2016年   186篇
  2015年   236篇
  2014年   285篇
  2013年   349篇
  2012年   433篇
  2011年   398篇
  2010年   253篇
  2009年   213篇
  2008年   271篇
  2007年   240篇
  2006年   235篇
  2005年   189篇
  2004年   244篇
  2003年   147篇
  2002年   140篇
  2001年   143篇
  2000年   97篇
  1999年   77篇
  1998年   21篇
  1997年   28篇
  1996年   18篇
  1995年   17篇
  1994年   11篇
  1993年   17篇
  1992年   22篇
  1991年   29篇
  1990年   28篇
  1989年   21篇
  1988年   10篇
  1987年   13篇
  1986年   6篇
  1985年   14篇
  1984年   4篇
  1983年   6篇
  1982年   4篇
  1981年   4篇
  1980年   3篇
  1979年   9篇
  1978年   5篇
  1977年   3篇
  1974年   3篇
  1972年   3篇
排序方式: 共有5068条查询结果,搜索用时 10 毫秒
121.
Tak H  Jang E  Kim SB  Park J  Suk J  Yoon YS  Ahn JK  Lee JH  Joe CO 《Cellular signalling》2007,19(11):2379-2387
The signal pathway by which 14-3-3epsilon inhibits cell migration induced by MAPK-activated protein kinase 5 (MK5) was investigated in cultured HeLa cells. Both in vivo and in vitro analyses have revealed that 14-3-3epsilon interacts with MK5. 14-3-3epsilon bound to MK5 inhibits the phosphorylation of HSP27, a known substrate of MK5. Disturbance of actin cytoskeleton organization by 14-3-3epsilon was shown in transfected cells transiently expressing 14-3-3epsilon as well as established cells stably expressing 14-3-3epsilon. Moreover, overexpression of 14-3-3epsilon resulted in the inhibition of cell migration induced by MK5 overexpression or TNFalpha treatment. Our results suggest that 14-3-3epsilon bound to MK5 inhibits cell migration by inhibiting the phosphorylation of HSP27 whose phosphorylation regulates F-actin polymerization, actin cytoskeleton organization and subsequent actinfilament dynamics.  相似文献   
122.
New A-ring modified betulinic acid derivatives having small steric hindrance were prepared and tested for cytotoxic activity on 3 cancer cell lines: 10 compounds showed stronger cytotoxic activity than betulinic acid. Especially, the compounds bearing 1-ene-3-oxo with electron-withdrawing groups at C2 showed strong cytotoxicity.  相似文献   
123.
Molecular and Cellular Biochemistry - Electron transfer occurs through heme-Fe across the cytochrome c protein. The current models of long range electron transfer pathways in proteins include...  相似文献   
124.
Jun Y  Ahn K 《BMB reports》2011,44(6):369-374
MHC-I molecules play a critical role in immune surveillance against viruses by presenting peptides to cytotoxic T lymphocytes. Although the mechanisms by which MHC-I molecules assemble and acquire peptides in the ER are well characterized, how MHC-I molecules traffic to the cell surface remains poorly understood. To identify novel proteins that regulate the intracellular transport of MHC-I molecules, MHC-I-interacting proteins were isolated by affinity purification, and their identity was determined by mass spectrometry. Among the identified MHC-I-associated proteins was Tmp21, the human ortholog of yeast Emp24p, which mediates the ER-Golgi trafficking of a subset of proteins. Here, we show that Tmp21 binds to human classical and non-classical MHC-I molecules. The Tmp21-MHC-I complex lacks Β(2)-microglobulin, and the number of the complexes is increased when free MHC-I heavy chains are more abundant. Taken together, these results suggest that Tmp21 is a novel protein that preferentially binds to Β(2)-microglobulin-free MHC-I heavy chains.  相似文献   
125.
Since the bacterial resistance to antibiotics is increasing rapidly, numerous studies have contributed to the design and synthesis of potent synthetic mimics of antimicrobial peptides (AMPs). In an attempt to find the pharmacophore of short antimicrobial peptidomimetics through systematic tuning of hydrophobic and hydrophilic patterns, we have identified a set of short histidine-derived antimicrobial peptides (SAMPs) with potent and broad-spectrum activity. A combination of high antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA), without hemolytic activity and proteolytic stability makes these molecules promising candidates for novel antimicrobial therapeutics.  相似文献   
126.
We examined the elevational patterns of plant species along two transects on Mt Seorak, South Korea, and calculated four richness indices from field survey data: total number of species per 100 m elevational band; mean number of species per plot in each elevational band; total estimated number of species per elevational band; and beta diversity of each elevational band. We evaluated the effects of area, mean distance between plots, climatic variables (mean annual temperature and precipitation), and productivity on the richness patterns along the two transects. In total, 235 plant species belonging to 72 families and 161 genera were recorded from 130 plots along the two transects. The analyses revealed different patterns including monotonic decline, and unimodal and multimodal shapes for richness indices of total, woody, and herbaceous plants with the change in elevation along the two transects. The proportion of suitable area (as opposed to rocky areas) was the best predictor for total number of species per elevational band, mean number of species per plot, and total estimated number of species per elevational band of total and herbaceous plants along the two transects. Mean distance between plots was the most important variable for beta diversity of all plant groups. Although regional area, climatic variables, and productivity were important variables for predicting woody plant richness patterns, the effects were not consistent between the two transects. Our study suggests that elevational species richness patterns may differ not only among different plant groups, but also between nearby elevational transects, and that these differences are explained by differences in the underlying mechanisms shaping these patterns.  相似文献   
127.
Abstract

The metabolism of O6-propyl-carbovir and N6-propyl-carbovir, two selective inhibitors of HIV replication, has been evaluated in CEM cells. Both compounds were phosphorylated in intact cells to carbovir-5′-triphosphate. The metabolism of these two agents was inhibited by deoxycoformycin and mycophenolic acid, but not erythro-9-(2-hydroxy-3-nonyl)adenine. No evidence of the 5′-triphosphate of either compound was detected in CEM cells.  相似文献   
128.
Derlin-1 plays a critical role in endoplasmic reticulum-associated protein degradation (ERAD) of a particular subset of proteins. Although it is generally accepted that Derlin-1 mediates the export of ERAD substrates from the ER to the cytosol, little is known about how Derlin-1 interacts with these substrates. Human cytomegalovirus (HCMV) US11 exploits Derlin-1-dependent ERAD to degrade major histocompatibility complex class I (MHC-I) molecules and evade immune surveillance. US11 requires the cytosolic tail of the MHC-I heavy chain to divert MHC-I molecules into the ERAD pathway for degradation; however, the underlying mechanisms remain unknown. Here, we show that the cytosolic tail of the MHC-I heavy chain, although not required for interaction with US11, is required for tight binding to Derlin-1 and thus for US11-induced dislocation of the MHC-I heavy chain to the cytosol for proteasomal degradation. Surprisingly, deletion of a single C-terminal amino acid from the cytosolic tail disrupted the interaction between MHC-I molecules and Derlin-1, rendering mutant MHC-I molecules resistant to US11-induced degradation. Consistently, deleting the C-terminal cytosolic region of Derlin-1 prevented it from binding to MHC-I molecules. Taken together, these results suggest that the cytosolic region of Derlin-1 is involved in ERAD substrate binding and that this interaction is critical for the Derlin-1-mediated dislocation of the MHC-I heavy chain to the cytosol during US11-induced MHC-I degradation.  相似文献   
129.
At all stages of male gametogenesis, generative and vegetative pollen nuclei of Nicotiana sylvestris can be distinguished without ambiguity after Feulgen or ethidium bromide staining. They differ by their morphology and their apparent DNA content, always lower in vegetative nuclei. These differences provide a basis for their separation by sedimentation and fluorometry. After elimination of the another somatic cells and after crushing the pollen, vegetative and generative nuclei are separated by two successive Percoll gradients (purity 80–90%). Analysis of the gradient fractions and final purification can be done with a cell sorter. DNAs of both types are isolated by a cetyltrimethylammonium method, followed by a RNase treatment. Yields are lower for vegetative than for generative nuclei, and decrease with the age of pollen. Molecular weights and digestibility by restriction enzymes are compatible with molecular analyses.  相似文献   
130.
Accurate retention time (RT) prediction is important for spectral library-based analysis in data-independent acquisition mass spectrometry-based proteomics. The deep learning approach has demonstrated superior performance over traditional machine learning methods for this purpose. The transformer architecture is a recent development in deep learning that delivers state-of-the-art performance in many fields such as natural language processing, computer vision, and biology. We assess the performance of the transformer architecture for RT prediction using datasets from five deep learning models Prosit, DeepDIA, AutoRT, DeepPhospho, and AlphaPeptDeep. The experimental results on holdout datasets and independent datasets exhibit state-of-the-art performance of the transformer architecture. The software and evaluation datasets are publicly available for future development in the field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号