首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6275篇
  免费   553篇
  国内免费   12篇
  6840篇
  2024年   7篇
  2023年   65篇
  2022年   128篇
  2021年   220篇
  2020年   99篇
  2019年   161篇
  2018年   178篇
  2017年   173篇
  2016年   224篇
  2015年   326篇
  2014年   321篇
  2013年   413篇
  2012年   503篇
  2011年   458篇
  2010年   290篇
  2009年   224篇
  2008年   321篇
  2007年   325篇
  2006年   277篇
  2005年   272篇
  2004年   204篇
  2003年   183篇
  2002年   221篇
  2001年   147篇
  2000年   190篇
  1999年   129篇
  1998年   50篇
  1997年   28篇
  1996年   33篇
  1995年   46篇
  1994年   34篇
  1993年   32篇
  1992年   68篇
  1991年   58篇
  1990年   58篇
  1989年   58篇
  1988年   44篇
  1987年   33篇
  1986年   41篇
  1985年   44篇
  1984年   25篇
  1983年   21篇
  1982年   12篇
  1981年   16篇
  1980年   8篇
  1979年   15篇
  1978年   12篇
  1977年   12篇
  1976年   7篇
  1972年   6篇
排序方式: 共有6840条查询结果,搜索用时 0 毫秒
101.
Despite the prevalence of Aspergillus-related disease in immune suppressed lung transplant patients, little is known of the host-pathogen interaction. Because of the mould’s angiotropic nature and because of its capacity to thrive in hypoxic conditions, we hypothesized that the degree of Aspergillus invasion would increase with progressive rejection-mediated ischemia of the allograft. To study this relationship, we utilized a novel orthotopic tracheal transplant model of Aspergillus infection, in which it was possible to assess the effects of tissue hypoxia and ischemia on airway infectivity. Laser Doppler flowmetry and FITC-lectin were used to determine blood perfusion, and a fiber optic microsensor was used to measure airway tissue oxygen tension. Fungal burden and depth of invasion were graded using histopathology. We demonstrated a high efficacy (80%) for producing a localized fungal tracheal infection with the majority of infection occurring at the donor-recipient anastomosis; Aspergillus was more invasive in allogeneic compared to syngeneic groups. During the study period, the overall kinetics of both non-infected and infected allografts was similar, demonstrating a progressive loss of perfusion and oxygenation, which reached a nadir by days 10-12 post-transplantation. The extent of Aspergillus invasion directly correlated with the degree of graft hypoxia and ischemia. Compared to the midtrachea, the donor-recipient anastomotic site exhibited lower perfusion and more invasive disease; a finding consistent with clinical experience. For the first time, we identify ischemia as a putative risk factor for Aspergillus invasion. Therapeutic approaches focused on preserving vascular health may play an important role in limiting Aspergillus infections.  相似文献   
102.
103.
Protein kinases play key roles in oncogenic signaling and are a major focus in the development of targeted cancer therapies. Imatinib, a BCR-Abl tyrosine kinase inhibitor, is a successful front-line treatment for chronic myelogenous leukemia (CML). However, resistance to imatinib may be acquired by BCR-Abl mutations or hyperactivation of Src family kinases such as Lyn. We have used multiplexed kinase inhibitor beads (MIBs) and quantitative mass spectrometry (MS) to compare kinase expression and activity in an imatinib-resistant (MYL-R) and -sensitive (MYL) cell model of CML. Using MIB/MS, expression and activity changes of over 150 kinases were quantitatively measured from various protein kinase families. Statistical analysis of experimental replicates assigned significance to 35 of these kinases, referred to as the MYL-R kinome profile. MIB/MS and immunoblotting confirmed the over-expression and activation of Lyn in MYL-R cells and identified additional kinases with increased (MEK, ERK, IKKα, PKCβ, NEK9) or decreased (Abl, Kit, JNK, ATM, Yes) abundance or activity. Inhibiting Lyn with dasatinib or by shRNA-mediated knockdown reduced the phosphorylation of MEK and IKKα. Because MYL-R cells showed elevated NF-κB signaling relative to MYL cells, as demonstrated by increased IκBα and IL-6 mRNA expression, we tested the effects of an IKK inhibitor (BAY 65-1942). MIB/MS and immunoblotting revealed that BAY 65-1942 increased MEK/ERK signaling and that this increase was prevented by co-treatment with a MEK inhibitor (AZD6244). Furthermore, the combined inhibition of MEK and IKKα resulted in reduced IL-6 mRNA expression, synergistic loss of cell viability and increased apoptosis. Thus, MIB/MS analysis identified MEK and IKKα as important downstream targets of Lyn, suggesting that co-targeting these kinases may provide a unique strategy to inhibit Lyn-dependent imatinib-resistant CML. These results demonstrate the utility of MIB/MS as a tool to identify dysregulated kinases and to interrogate kinome dynamics as cells respond to targeted kinase inhibition.  相似文献   
104.
105.
Density functional theory (DFT) calculations performed at the PBE/DZP level using the DFT-D2 method were utilized to investigate the adsorption of phenol on pristine activated carbon (AC) and on activated carbon functionalized with OH, CHO, or COOH groups. Over the pristine AC, the phenol molecule undergoes weak physical adsorption due to van der Waals interactions between the aromatic part of the phenol and the basal planes of the AC. Among the three functional groups used to functionalize the AC, the carboxylic group was found to interact most strongly with the hydroxyl group of phenol. These results suggest that functionalized AC-COOH has great potential for use in environmental applications as an adsorbent of phenol molecules in aqueous phases.  相似文献   
106.

Background

Cardiovascular disease (CVD) is one of the leading causes of morbidity and mortality in Vietnam and hypertension (HTN) is an important and prevalent risk factor for CVD in the adult Vietnamese population. Despite an increasing prevalence of HTN in this country, information about the awareness, treatment, and control of HTN is limited. The objectives of this study were to describe the prevalence, awareness, treatment, and control of HTN, and factors associated with these endpoints, in residents of a mountainous province in Vietnam.

Methods

Data from 2,368 adults (age≥25 years) participating in a population-based survey conducted in 2011 in Thai Nguyen province were analyzed. All eligible participants completed a structured questionnaire and were examined by community health workers using a standardized protocol.

Results

The overall prevalence of HTN in this population was 23%. Older age, male sex, and being overweight were associated with a higher odds of having HTN, while higher educational level was associated with a lower odds of having HTN. Among those with HTN, only 34% were aware of their condition, 43% of those who were aware they had HTN received treatment and, of these, 39% had their HTN controlled.

Conclusions

Nearly one in four adults in Thai Nguyen is hypertensive, but far fewer are aware of this condition and even fewer have their blood pressure adequately controlled. Public health strategies increasing awareness of HTN in the community, as well as improvements in the treatment and control of HTN, remain needed to reduce the prevalence of HTN and related morbidity and mortality.  相似文献   
107.

Background

Helical tomotherapy (HT) and volumetric modulated arc therapy (VMAT) are both advanced techniques of delivering intensity-modulated radiotherapy (IMRT). Here, we conduct a study to compare HT and partial-arc VMAT in their ability to spare organs at risk (OARs) when stereotactic ablative radiotherapy (SABR) is delivered to treat centrally located early stage non-small-cell lung cancer or lung metastases.

Methods

12 patients with centrally located lung lesions were randomly chosen. HT, 2 & 8 arc (Smart Arc, Pinnacle v9.0) plans were generated to deliver 70 Gy in 10 fractions to the planning target volume (PTV). Target and OAR dose parameters were compared. Each technique’s ability to meet dose constraints was further investigated.

Results

HT and VMAT plans generated essentially equivalent PTV coverage and dose conformality indices, while a trend for improved dose homogeneity by increasing from 2 to 8 arcs was observed with VMAT. Increasing the number of arcs with VMAT also led to some improvement in OAR sparing. After normalizing to OAR dose constraints, HT was found to be superior to 2 or 8-arc VMAT for optimal OAR sparing (meeting all the dose constraints) (p = 0.0004). All dose constraints were met in HT plans. Increasing from 2 to 8 arcs could not help achieve optimal OAR sparing for 4 patients. 2/4 of them had 3 immediately adjacent structures.

Conclusion

HT appears to be superior to VMAT in OAR sparing mainly in cases which require conformal dose avoidance of multiple immediately adjacent OARs. For such cases, increasing the number of arcs in VMAT cannot significantly improve OAR sparing.  相似文献   
108.
Although the function and regulation of SnRK1 have been studied in various plants, its molecular mechanisms in response to abiotic stresses are still elusive. In this work, we identified an AP2/ERF domain-containing protein (designated GsERF7) interacting with GsSnRK1 from a wild soybean cDNA library. GsERF7 gene expressed dominantly in wild soybean roots and was responsive to ethylene, salt, and alkaline. GsERF7 bound GCC cis-acting element and could be phosphorylated on S36 by GsSnRK1. GsERF7 phosphorylation facilitated its translocation from cytoplasm to nucleus and enhanced its transactivation activity. When coexpressed in the hairy roots of soybean seedlings, GsSnRK1(wt) and GsERF7(wt) promoted plants to generate higher tolerance to salt and alkaline stresses than their mutated species, suggesting that GsSnRK1 may function as a biochemical and genetic upstream kinase of GsERF7 to regulate plant adaptation to environmental stresses. Furthermore, the altered expression patterns of representative abiotic stress-responsive and hormone-synthetic genes were determined in transgenic soybean hairy roots after stress treatments. These results will aid our understanding of molecular mechanism of how SnRK1 kinase plays a cardinal role in regulating plant stress resistances through activating the biological functions of downstream factors.  相似文献   
109.
Our current understanding of phagocytosis is largely derived from studies of individual receptor-ligand interactions and their downstream signaling pathways. Because phagocytes are exposed to a variety of ligands on heterogeneous target particles in vivo, it is important to observe the engagement of multiple receptors simultaneously and the triggered involvement of downstream signaling pathways. Potential crosstalk between the two well-characterized opsonic receptors, FcγR and CR3, was briefly explored in the early 1970s, where macrophages were challenged with dual-opsonized targets. However, subsequent studies on receptor crosstalk were primarily restricted to using single opsonins on different targets, typically at saturating opsonin conditions. Beyond validating these initial explorations on receptor crosstalk, we identify the early signaling mechanisms that underlie the binding and phagocytosis during the simultaneous activation of both opsonic receptors, through the presence of a dual-opsonized target (immunoglobulin G [IgG] and C3bi), compared with single receptor activation. For this purpose, we used signaling protein inhibitor studies as well as live cell brightfield and fluorescent imaging to fully understand the role of tyrosine kinases, F-actin dynamics and internalization kinetics for FcγR and CR3. Importantly, opsonic receptors were studied together and in isolation, in the context of sparsely opsonized targets. We observed enhanced particle binding and a synergistic effect on particle internalization during the simultaneous activation of FcγR and CR3 engaged with sparsely opsonized targets. Inhibition of early signaling and cytoskeletal molecules revealed a differential involvement of Src kinase for FcγR- vs CR3- and dual receptor-mediated phagocytosis. Src activity recruits Syk kinase and we observed intermediate levels of Syk phosphorylation in dual-opsonized particles compared with those opsonized with IgG or C3bi alone. These results likely explain the intermediate levels of F-actin that is recruited to sites of dual-opsonized particle uptake and the notoriously delayed internalization of C3bi-opsonized targets by macrophages.  相似文献   
110.

Recent studies continue to find evidence linking Type 2 diabetes (T2D) with Alzheimer's disease (AD), the most common cause of dementia, a general term for memory loss and other cognitive abilities serious enough to interfere with daily life. Insulin resistance or dysfunction of insulin signaling is a universal feature of T2D, the main culprit for altered glucose metabolism and its interdependence on cell death pathways, forming the basis of linking T2D with AD as it may exacerbate Aβ accumulation, tau hyperphosphorylation and devastates glucose transportation, energy metabolism, hippocampal framework and promulgate inflammatory pathways. The current work demonstrates the basic mechanisms of the insulin resistance mediates dysregulation of bioenergetics and progress to AD as a mechanistic link between diabetes mellitus and AD. This work also aimed to provide a potential and feasible zone to succeed in the development of therapies in AD by enhanced hypometabolism and altered insulin signaling.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号