首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6908篇
  免费   607篇
  国内免费   29篇
  7544篇
  2023年   68篇
  2022年   134篇
  2021年   228篇
  2020年   107篇
  2019年   174篇
  2018年   184篇
  2017年   182篇
  2016年   237篇
  2015年   358篇
  2014年   368篇
  2013年   453篇
  2012年   552篇
  2011年   501篇
  2010年   320篇
  2009年   256篇
  2008年   351篇
  2007年   350篇
  2006年   304篇
  2005年   310篇
  2004年   239篇
  2003年   204篇
  2002年   241篇
  2001年   154篇
  2000年   195篇
  1999年   140篇
  1998年   61篇
  1997年   35篇
  1996年   40篇
  1995年   51篇
  1994年   37篇
  1993年   37篇
  1992年   77篇
  1991年   64篇
  1990年   63篇
  1989年   68篇
  1988年   52篇
  1987年   37篇
  1986年   46篇
  1985年   51篇
  1984年   29篇
  1983年   23篇
  1982年   19篇
  1981年   16篇
  1980年   11篇
  1979年   22篇
  1978年   17篇
  1977年   18篇
  1974年   8篇
  1973年   11篇
  1972年   8篇
排序方式: 共有7544条查询结果,搜索用时 15 毫秒
961.
Vesicular transporters are required for the storage of?all classical and amino acid neurotransmitters in synaptic vesicles. Some neurons lack known vesicular transporters, suggesting additional neurotransmitter systems remain unidentified. Insect mushroom bodies (MBs) are critical for several behaviors, including learning, but the neurotransmitters released by the intrinsic Kenyon cells (KCs) remain unknown. Likewise, KCs do not express a known vesicular transporter. We report the identification of a novel Drosophila gene portabella (prt) that is structurally similar to known vesicular transporters. Both larval and adult brains express PRT in the KCs of the MBs. Additional PRT cells project to the central complex and optic ganglia. prt mutation causes an olfactory learning deficit and an unusual defect in the male's position during copulation that is rescued by expression in KCs. Because prt is expressed in neurons that lack other known vesicular transporters or neurotransmitters, it may define a previously unknown neurotransmitter system responsible for sexual behavior and a component of olfactory learning.  相似文献   
962.
Dexras1/AGS1/RasD1 is a member of the Ras superfamily of monomeric G proteins and has been suggested to disrupt receptor-G protein signaling. We examined the ability of Dexras1 to modulate dopamine D2L receptor regulation of adenylyl cyclase (AC) type 1 in HEK293 cells. Acute D2L receptor-mediated inhibition of A23187-stimulated AC1 activity (IC50, 4.0 ± 1.4 nM; 50 ± 3% inhibition) was not altered in the presence of Dexras1 (IC50, 2.4 ± 1.3 nM, 50 ± 1% inhibition); however, Dexras1 blocked acute D2L receptor-mediated activation of ERK 1/2 by approximately 50%. Heterologous sensitization of AC1 induced by persistent activation of D2L receptors was completely blocked by Dexras1 under basal and A23187-stimulated conditions. The block of sensitization was concentration-dependent and was not observed with a nucleotide binding-deficient Dexras1G31V mutant. Sensitization of AC1 was Gβγ-dependent as demonstrated using the C-terminus of β-adrenergic receptor kinase (βARK-ct). These data suggest that Dexras1 selectively regulates receptor-mediated Gβγ signaling pathways.  相似文献   
963.
Plant and Soil - This study investigated the possible source organs delivering several trace elements to seeds (root uptake versus net remobilization), by studying changes in biomass and element...  相似文献   
964.
The number of grains per panicle is an important yield-related trait in cereals which depends in part on panicle branching complexity. One component of this complexity is the number of secondary branches per panicle. Previously, a GWAS site associated with secondary branch and spikelet numbers per panicle in rice was identified. Here we combined gene capture, bi-parental genetic population analysis, expression profiling and transgenic approaches in order to investigate the functional significance of a cluster of 6 ANK and ANK-TPR genes within the QTL. Four of the ANK and ANK-TPR genes present a differential expression associated with panicle secondary branch number in contrasted accessions. These differential expression patterns correlate in the different alleles of these genes with specific deletions of potential cis-regulatory sequences in their promoters. Two of these genes were confirmed through functional analysis as playing a role in the control of panicle architecture. Our findings indicate that secondary branching diversity in the rice panicle is governed in part by differentially expressed genes within this cluster encoding ANK and ANK-TPR domain proteins that may act as positive or negative regulators of panicle meristem’s identity transition from indeterminate to determinate state.  相似文献   
965.
Bruguiera hainesii (Rhizophoraceae) is one of the two Critically Endangered mangrove species listed in the IUCN Red List of Threatened Species. Although the species is vulnerable to extinction, its genetic diversity and the evolutionary relationships with other Bruguiera species are not well understood. Also, intermediate morphological characters imply that the species might be of hybrid origin. To clarify the genetic relationship between B. hainesii and other Bruguiera species, we conducted molecular analyses including all six Bruguiera species using DNA sequences of two nuclear genes (CesA and UNK) and three chloroplast regions (intergenic spacer regions of trnL-trnF, trnS-trnG and atpB-rbcL). For nuclear DNA markers, all nine B. hainesii samples from five populations were heterozygous at both loci, with one allele was shared with B. cylindrica, and the other with B. gymnorhiza. For chloroplast DNA markers, the two haplotypes found in B. hainesii were shared only by B. cylindrica. These results suggested that B. hainesii is a hybrid between B. cylindrica as the maternal parent and B. gymnorhiza as the paternal one. Furthermore, chloroplast DNA haplotypes found in B. hainesii suggest that hybridization has occurred independently in regions where the distribution ranges of the parental species meet. As the IUCN Red List of Threatened Species currently excludes hybrids (except for apomictic plant hybrids), the conservation status of B. hainesii should be reconsidered.  相似文献   
966.
In colonies of European Apis mellifera, Varroa jacobsoni reproduces both in drone and in worker cells. In colonies of its original Asian host, Apis cerana, the mites invade both drone and worker brood cells, but reproduce only in drone cells. Absence of reproduction in worker cells is probably crucial for the tolerance of A. cerana towards V. jacobsoni because it implies that the mite population can only grow during periods in which drones are reared. To test if non-reproduction of V. jacobsoni in worker brood cells of A. cerana is due to a trait of the mites or of the honey-bee species, mites from bees in A. mellifera colonies were artificially introduced into A. cerana worker brood cells and vice versa. Approximately 80% of the mites from A. mellifera colonies reproduced in naturally infested worker cells as well as when introduced into worker cells of A. mellifera and A. cerana. Conversely, only 10% of the mites from A. cerana colonies reproduced, both in naturally infested worker cells of A. cerana and when introduced into worker cells of A. mellifera. Hence, absence of reproduction in worker cells is due to a trait of the mites. Additional experiments showed that A. cerana bees removed 84% of the worker brood that was artificially infested with mites from A. mellifera colonies. Brood removal started 2 days after artificial infestation, which suggests that the bees responded to behaviour of the mites. Since removal behaviour of the bees will have a large impact on fitness of the mites, it probably plays an important role in selection for differential reproductive strategies. Our findings have large implications for selection programmes to breed less-susceptible bee strains. If differences in non-reproduction are mite specific, we should not only look for non-reproduction as such, but for colonies in which non-reproduction in worker cells is selected. Hence, in selection programmes fitness of mites that reproduce in both drone and worker cells should be compared to fitness of mites that reproduce only in drone cells. © Rapid Science Ltd. 1998  相似文献   
967.
The identification of genetic factors underlying the complex responses of plants to drought stress provides a solid basis for improving drought resistance. The stay-green character in sorghum (Sorghum bicolor L. Moench) is a post-flowering drought resistance trait, which makes plants resistant to premature senescence under drought stress during the grainfilling stage. The objective of this study was to identify quantitative trait loci (QTLs) that control premature senescence and maturity traits, and to investigate their association under post-flowering drought stress in grain sorghum. A genetic linkage map was developed using a set of recombinant inbred lines (RILs) obtained from the cross B35 × Tx430, which were scored for 142 restriction fragment length polymorphism (RFLP) markers. The RILs and their parental lines were evaluated for post-flowering drought resistance and maturity in four environments. Simple interval mapping identified seven stay-green QTLs and two maturity QTLs. Three major stay-green QTLs (SGA, SGD and SGG) contributed to 42% of the phenotypic variability (LOD 9.0) and four minor QTLs (SGB, SGI.1, SGI.2, and SGJ) significantly contributed to an additional 25% of the phenotypic variability in stay-green ratings. One maturity QTL (DFB) alone contributed to 40% of the phenotypic variability (LOD 10.0), while the second QTL (DFG) significantly contributed to an additional 17% of the phenotypic variability (LOD 4.9). Composite interval mapping confirmed the above results with an additional analysis of the QTL × Environment interaction. With heritability estimates of 0.72 for stay-green and 0.90 for maturity, the identified QTLs explained about 90% and 63% of genetic variability for stay-green and maturity traits, respectively. Although stay-green ratings were significantly correlated (r=0.22, P ≤ 0.05) with maturity, six of the seven stay-green QTLs were independent of the QTLs influencing maturity. Similarly, one maturity QTL (DFB) was independent of the stay-green QTLs. One stay-green QTL (SGG), however, mapped in the vicinity of a maturity QTL (DFG), and all markers in the vicinity of the independent maturity QTL (DFB) were significantly (P ≤ 0.1) correlated with stay-green ratings, confounding the phenotyping of stay-green. The molecular genetic analysis of the QTLs influencing stay-green and maturity, together with the association between these two inversely related traits, provides a basis for further study of the underlying physiological mechanisms and demonstrates the possibility of improving drought resistance in plants by pyramiding the favorable QTLs. Received: 10 October 1998 / Accepted: 12 July 1999  相似文献   
968.
969.
Photosynthesis Research - Coralline algae (CA) are globally distributed and fulfil many important roles within coastal ecosystems. In this study, photosynthetically active radiation (PAR) measured...  相似文献   
970.
Beta-lactam- and in particular carbapenem-resistant Enterobacteriaceae represent a major public health threat. Despite strong variation of resistance across geographical settings, there is limited understanding of the underlying drivers. To assess these drivers, we developed a transmission model of cephalosporin- and carbapenem-resistant Klebsiella pneumoniae. The model is parameterized using antibiotic consumption and demographic data from eleven European countries and fitted to the resistance rates for Klebsiella pneumoniae for these settings. The impact of potential drivers of resistance is then assessed in counterfactual analyses. Based on reported consumption data, the model could simultaneously fit the prevalence of extended-spectrum beta-lactamase-producing and carbapenem-resistant Klebsiella pneumoniae (ESBL and CRK) across eleven European countries over eleven years. The fit could explain the large between-country variability of resistance in terms of consumption patterns and fitted differences in hospital transmission rates. Based on this fit, a counterfactual analysis found that reducing nosocomial transmission and antibiotic consumption in the hospital had the strongest impact on ESBL and CRK prevalence. Antibiotic consumption in the community also affected ESBL prevalence but its relative impact was weaker than inpatient consumption. Finally, we used the model to estimate a moderate fitness cost of CRK and ESBL at the population level. This work highlights the disproportionate role of antibiotic consumption in the hospital and of nosocomial transmission for resistance in gram-negative bacteria at a European level. This indicates that infection control and antibiotic stewardship measures should play a major role in limiting resistance even at the national or regional level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号