首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6292篇
  免费   553篇
  国内免费   12篇
  6857篇
  2024年   7篇
  2023年   65篇
  2022年   128篇
  2021年   220篇
  2020年   99篇
  2019年   161篇
  2018年   179篇
  2017年   173篇
  2016年   225篇
  2015年   329篇
  2014年   322篇
  2013年   414篇
  2012年   505篇
  2011年   459篇
  2010年   290篇
  2009年   224篇
  2008年   323篇
  2007年   327篇
  2006年   279篇
  2005年   272篇
  2004年   204篇
  2003年   183篇
  2002年   221篇
  2001年   147篇
  2000年   190篇
  1999年   129篇
  1998年   50篇
  1997年   28篇
  1996年   33篇
  1995年   46篇
  1994年   34篇
  1993年   32篇
  1992年   68篇
  1991年   58篇
  1990年   58篇
  1989年   58篇
  1988年   44篇
  1987年   33篇
  1986年   41篇
  1985年   45篇
  1984年   25篇
  1983年   21篇
  1982年   12篇
  1981年   16篇
  1980年   8篇
  1979年   15篇
  1978年   12篇
  1977年   12篇
  1976年   7篇
  1972年   6篇
排序方式: 共有6857条查询结果,搜索用时 15 毫秒
971.
972.
973.
Nguyen  Hung  Zerimech  Sarah  Baltan  Selva 《Neurochemical research》2021,46(10):2696-2714

This review summarizes the diverse structure and function of astrocytes to describe the bioenergetic versatility required of astrocytes that are situated at different locations. The intercellular domain of astrocyte mitochondria defines their roles in supporting and regulating astrocyte-neuron coupling and survival against ischemia. The heterogeneity of astrocyte mitochondria, and how subpopulations of astrocyte mitochondria adapt to interact with other glia and regulate axon function, require further investigation. It has become clear that mitochondrial permeability transition pores play a key role in a wide variety of human diseases, whose common pathology may be based on mitochondrial dysfunction triggered by Ca2+ and potentiated by oxidative stress. Reactive oxygen species cause axonal degeneration and a reduction in axonal transport, leading to axonal dystrophies and neurodegeneration including Alzheimer’s disease, amyotrophic lateral sclerosis, Parkinson’s disease, and Huntington’s disease. Developing new tools to allow better investigation of mitochondrial structure and function in astrocytes, and techniques to specifically target astrocyte mitochondria, can help to unravel the role of mitochondrial health and dysfunction in a more inclusive context outside of neuronal cells. Overall, this review will assess the value of astrocyte mitochondria as a therapeutic target to mitigate acute and chronic injury in the CNS.

  相似文献   
974.
The development of the predatory mites, Neoseiulus womersleyi (Schicha) and Euseius ovalis (Evans), feeding on four tetranychid mites (Tetranychus urticae, Tetranychus kanzawai, Oligonychus mangiferus, Panonychus citri), maize pollen or Chinese loofah pollen was studied at 25 °C. Immature stages of N. womersleyi feeding on T. urticae and T. kanzawai had shorter developmental duration (4.71 and 5.02 days for females, 4.77 and 5.19 days for males, respectively) than those feeding on other food sources. Immature stages of E. ovalis females feeding on O. mangiferus and T. urticae developed in 4.99 and 5.13 days, respectively, the shortest developmental duration measured. Immature stages of E. ovalis males feeding on O. mangiferus and T. urticae developed in 5.12 and 5.37 days, respectively. The longevity of N. womersleyi males (13.31 to 14.51 days) and females (17.67 to 21.81 days) feeding on T. urticae, T. kanzawai or maize pollen was longer than the longevity of N. womersleyi feeding on O. mangiferus, P. citri or loofah pollen. E. ovalis males (12.91 to 16.74 days) and females (16.24 to 23.77 days) feeding on O. mangiferus, T. urticae or maize pollen lived longer than E. ovalis males and females feeding on T. kanzawai, P. citri or loofah pollen.  相似文献   
975.
976.
Hydroxyl or peroxyl radicals and hypochlorous acid (HOCl) are known to cause the oxidation of lipoproteins. Here, we examined Cu2+-binding property of paraoxonase 1 (PON1), and antioxidant actions of peptides, resembling His residue-containing sequences in PON1, against oxidations by Cu2+, peroxyl radicals or HOCl. When Cu2+-binding property of PON1 was examined spectrophotometrically, the maximal Cu2+ binding was achieved at 1:1 molar ratio of PON1: Cu2+. Additionally, Cu2+-catalyzed oxidative inactivation of PON1 was prevented by Ca2+-depleted PON1 at 1:1 ratio, but not diethylpyrocarbonate (DEPC)-modified PON1, suggesting the participation of His residue in Cu2+-binding. When His-containing peptides were examined for antioxidant actions, those with either His residue at N-terminal position 2 or 3, or His-Pro sequence at C-terminal remarkably prevented Cu2+-mediated low density lipoprotein (LDL) oxidation and PON1 inactivation. Especially, FHKALY, FHKY or NHP efficiently prevented Cu2+-induced LDL oxidation (24 h), indicating a tight binding of Cu2+ by peptides. In support of this, the peptide/Cu2+ complexes exhibited a superoxide-scavenging activity. Separately, in oxidations by 2,2'-azobis-2-amidinopropane hydrochloride or HOCl, the presence of Tyrosine (Tyr) or Cysteine (Cys) residue markedly enhanced antioxidant action of His-containing peptides. These results indicate that His-containing peptides with Tys or Cys residues correspond to broad spectrum antioxidants in oxidation models employing Cu2+, 2,2'-azobis-2-amidinopropane hydrochloride (AAPH) or HOCl.  相似文献   
977.
The Na-K-ATPase is part of a cell signaling complex, the Na-K-ATPase signalosome, which upon activation by the hormone ouabain regulates the function of different cell types. We previously showed that ouabain induces proliferation of epithelial cells derived from renal cysts of patients with autosomal dominant polycystic kidney disease (ADPKD cells). Here, we investigated the signaling pathways responsible for mediating the effects of ouabain in these cells. Incubation of ADPKD cells with ouabain, in concentrations similar to those found in blood, stimulated phosphorylation of the epidermal growth factor receptor (EGFR) and promoted its association to the Na-K-ATPase. In addition, ouabain activated the kinase Src, but not the related kinase Fyn. Tyrphostin AG1478 and PP2, inhibitors of EGFR and Src, respectively, blocked ouabain-dependent ADPKD cell proliferation. Treatment of ADPKD cells with ouabain also caused phosphorylation of the caveolar protein caveolin-1, and disruption of cell caveolae with methyl-β-cyclodextrin prevented Na-K-ATPase-EGFR interaction and ouabain-induced proliferation of the cells. Downstream effects of ouabain in ADPKD cells included activation of B-Raf and MEK and phosphorylation of the extracellular regulated kinase ERK, which translocated into the ADPKD cell nuclei. Finally, ouabain reduced expression of the cyclin-dependent kinase inhibitors p21 and p27, which are suppressors of cell proliferation. Different from ADPKD cells, ouabain showed no significant effect on B-Raf, p21, and p27 in normal human kidney epithelial cells. Altogether, these results identify intracellular pathways of ouabain-dependent Na-K-ATPase-mediated signaling in ADPKD cells, including EGFR-Src-B-Raf-MEK/ERK, and establish novel mechanisms involved in ADPKD cell proliferation.  相似文献   
978.
Microtubules are a highly validated target in cancer therapy. However, the clinical development of tubulin binding agents (TBA) has been hampered by toxicity and chemoresistance issues and has necessitated the search for new TBAs. Here, we report the identification of a novel cell permeable, tubulin-destabilizing molecule - 4,5,6,7-tetrahydro-1H-indazole-3-carboxylic acid [1p-tolyl-meth-(E)-ylidene]-hydrazide (termed as Suprafenacine, SRF). SRF, identified by in silico screening of annotated chemical libraries, was shown to bind microtubules at the colchicine-binding site and inhibit polymerization. This led to G2/M cell cycle arrest and cell death via a mitochondria-mediated apoptotic pathway. Cell death was preceded by loss of mitochondrial membrane potential, JNK - mediated phosphorylation of Bcl-2 and Bad, and activation of caspase-3. Intriguingly, SRF was found to selectively inhibit cancer cell proliferation and was effective against drug-resistant cancer cells by virtue of its ability to bypass the multidrug resistance transporter P-glycoprotein. Taken together, our results suggest that SRF has potential as a chemotherapeutic agent for cancer treatment and provides an alternate scaffold for the development of improved anti-cancer agents.  相似文献   
979.
980.
Archaeal swimming motility is driven by archaella: rotary motors attached to long extracellular filaments. The structure of these motors, and particularly how they are anchored in the absence of a peptidoglycan cell wall, is unknown. Here, we use electron cryotomography to visualize the archaellar basal body in vivo in Thermococcus kodakaraensis KOD1. Compared to the homologous bacterial type IV pilus (T4P), we observe structural similarities as well as several unique features. While the position of the cytoplasmic ATPase appears conserved, it is not braced by linkages that extend upward through the cell envelope as in the T4P, but rather by cytoplasmic components that attach it to a large conical frustum up to 500 nm in diameter at its base. In addition to anchoring the lophotrichous bundle of archaella, the conical frustum associates with chemosensory arrays and ribosome‐excluding material and may function as a polar organizing center for the coccoid cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号