首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9234篇
  免费   748篇
  国内免费   19篇
  10001篇
  2024年   12篇
  2023年   74篇
  2022年   167篇
  2021年   271篇
  2020年   139篇
  2019年   221篇
  2018年   268篇
  2017年   228篇
  2016年   342篇
  2015年   486篇
  2014年   506篇
  2013年   610篇
  2012年   767篇
  2011年   757篇
  2010年   454篇
  2009年   367篇
  2008年   496篇
  2007年   516篇
  2006年   410篇
  2005年   390篇
  2004年   313篇
  2003年   274篇
  2002年   306篇
  2001年   209篇
  2000年   247篇
  1999年   167篇
  1998年   77篇
  1997年   57篇
  1996年   49篇
  1995年   62篇
  1994年   46篇
  1993年   44篇
  1992年   78篇
  1991年   68篇
  1990年   72篇
  1989年   77篇
  1988年   56篇
  1987年   40篇
  1986年   47篇
  1985年   48篇
  1984年   32篇
  1983年   22篇
  1982年   12篇
  1981年   17篇
  1980年   9篇
  1979年   20篇
  1978年   14篇
  1977年   13篇
  1976年   7篇
  1972年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
102.
The combination of ipilimumab and nivolumab is a highly active systemic therapy for metastatic melanoma but can cause significant toxicity. We explore the safety and efficacy of this treatment in routine clinical practice, particularly in the setting of serine/threonine‐protein kinase B‐Raf (BRAF)‐targeted therapy. Consecutive patients with unresectable stage IIIC/IV melanoma commenced on ipilimumab and nivolumab across 10 tertiary melanoma institutions in Australia were identified retrospectively. Data collected included demographics, response and survival outcomes. A total of 152 patients were included for analysis, 39% were treatment‐naïve and 22% failed first‐line BRAF/MEK inhibitors. Treatment‐related adverse events occurred in 67% of patients, grade 3–5 in 38%. The overall objective response rate was 41%, 57% in treatment‐naïve and 21% in BRAF/MEK failure patients. Median progression‐free survival was 4.0 months (95% CI, 3.0–6.0) in the whole cohort, 11.0 months (95% CI, 6.0‐NR) in treatment‐naïve and 2.0 months (95% CI, 1.4–4.6) in BRAF/MEK failure patients. The combination of ipilimumab and nivolumab can be used safely and effectively in a real‐world population. While first‐line efficacy appears comparable to trial populations, BRAF‐mutant patients failing prior BRAF/MEK inhibitors show less response.  相似文献   
103.
104.
The [detection of virtually all mutations]-SSCP (DOVAM-S) is a highly sensitive variant of single strand conformation polymorphism (SSCP). Mutations in the factor IX gene were used to find a set of five SSCP conditions that detects virtually all mutations. A blinded analysis of the factor IX gene in patients with hemophilia B detected 82 of 82 unique mutations. Since the method was developed and tested on the factor IX gene, it is possible that the conditions selected work more efficiently in the factor IX gene than in other genes. To test the general applicability of the conditions under which DOVAM-S detected all mutations in this gene, blinded analyses were performed in the human factor VIII and ataxia-telangiectasia (ATM) genes. Segments were amplified individually, combined into groups of 16 to 18 amplified segments and electrophoresed in five different nondenaturing conditions of varying matrices, buffers, temperatures and additives. Blinded analyses were performed in 92 samples from patients with hemophilia A (factor VIII gene) and 19 samples from A-T patients (ATM gene). Combined with an earlier blinded analysis in the factor IX gene, all of the 250 mutations and polymorphisms (180 of which are unique) were detected in both analyses. For two, three and four joint conditions, the average detection frequency ranged from 77%-97%, 91%-100% and 95%-100%, respectively. For each of the genes, one mutation may have been missed if only four conditions were used. With DOVAM-S, approximately 500 kb of autosomal sequence can be scanned in five gels with virtually 100% detection of mutations within the scanned region. The detection of 180 out of 180 unique sequence changes implies that DOVAM-S detects at least 96.5% (P = 0.03) of mutations. Blinded analyses that detect 400 unique sequence changes are required to determine that a scanning method detects at least 98.5% of mutations.  相似文献   
105.
Members of the Arenaviridae family have been isolated from mammalian hosts in disparate geographic locations, leading to their grouping as Old World types (i.e., lymphocytic choriomeningitis virus [LCMV], Lassa fever virus [LFV], Mopeia virus, and Mobala virus) and New World types (i.e., Junin, Machupo, Tacaribe, and Sabia viruses) (C. J. Peters, M. J. Buchmeier, P. E. Rollin, and T. G. Ksiazek, p. 1521-1551, in B. N. Fields, D. M. Knipe, and P. M. Howley [ed.], Fields virology, 3rd ed., 1996; P. J. Southern, p. 1505-1519, in B. N. Fields, D. M. Knipe, and P. M. Howley [ed.], Fields virology, 3rd ed., 1996). Several types in both groups-LFV, Junin, Machupo, and Sabia viruses-cause severe and often lethal human diseases. By sequence comparison, we noted that eight Old World and New World arenaviruses share several amino acids with the nucleoprotein (NP) that consists of amino acids (aa) 118 to 126 (NP 118-126) (RPQASGVYM) of LCMV that comprise the immunodominant cytotoxic T-lymphocyte (CTL) epitope for H-2(d) mice (32). This L(d)-restricted epitope constituted >97% of the total bulk CTLs produced in the specific antiviral or clonal responses of H-2(d) BALB mice. NP 118-126 of the Old World arenaviruses LFV, Mopeia virus, and LCMV and the New World arenavirus Sabia virus bound at high affinity to L(d). The primary H-2(d) CTL anti-LCMV response as well as that of a CTL clone responsive to LCMV NP 118-126 recognized target cells coated with NP 118-126 peptides derived from LCMV, LFV, and Mopeia virus but not Sabia virus, indicating that a common functional NP epitope exists among Old World arenaviruses. Use of site-specific amino acid exchanges in the NP CTL epitope among these arenaviruses identified amino acids involved in major histocompatibility complex binding and CTL recognition.  相似文献   
106.
107.
108.
5-Hydroxytryptamine (5-HT) induces proliferation of cancer cells and vascular cells. In addition to 5-HT production by several cancer cells including gastrointestinal and breast cancer, a significant level of 5-HT is released from activated platelets in the thrombotic environment of tumors, suggesting that inhibition of 5-HT signaling may constitute a new target for antiangiogenic anticancer drug discovery. In the current study we clearly demonstrate that 5-HT-induced angiogenesis was mediated through the 5-HT1 receptor-linked Gβγ/Src/PI3K pathway, but not through the MAPK/ERK/p38 pathway. In addition, 5-HT induced production of NADPH oxidase (NOX)-derived reactive oxygen species (ROS). In an effort to develop new molecularly targeted anticancer agents against 5-HT action in tumor growth, we demonstrate that BJ-1108, a derivative of 6-amino-2,4,5-trimethylpyridin-3-ol, significantly inhibited 5-HT-induced angiogenesis. In addition, BJ-1108 induced a significant reduction in the size and weight of excised tumors in breast cancer cell-inoculated CAM assay, showing proportionate suppression of tumor growth along with inhibition of angiogenesis. In human umbilical vein endothelial cells (HUVECs), BJ-1108 significantly suppressed 5-HT-induced ROS generation and phosphorylation of PI3K/Akt but not of Src. Unlike NOX inhibitors, BJ-1108, which showed better antioxidant activity than vitamin C, barely suppressed superoxide anion induced by mevalonate or geranylgeranyl pyrophosphate which directly activates NOX without help from other signaling molecules in HUVECs, implying that the anti-angiogenic action of BJ-1108 was not mediated through direct action on NOX activation, or free radical scavenging activity. In conclusion, BJ-1108 inhibited 5-HT-induced angiogenesis through PI3K/NOX signaling but not through Src, ERK, or p38.  相似文献   
109.
110.
The ability of Tobacco mosaic virus (TMV) to tolerate various amino acid insertions near its carboxy terminus is well-known. Typically these inserts are based on antigenic sequences for vaccine development with plant viruses as carriers. However, we determined that the structural symmetries and the size range of the viruses could also be modeled to mimic the extracellular matrix proteins by inserting cell-binding sequences to the virus coat protein. The extracellular matrix proteins play important roles in guiding cell adhesion, migration, proliferation, and stem cell differentiation. Previous studies with TMV demonstrated that the native and phosphate-modified virus particles enhanced stem cell differentiation toward bone-like tissues. Based on these studies, we sought to design and screen multiple genetically modified TMV mutants with reported cell adhesion sequences to expand the virus-based tools for cell studies. Here, we report the design of these mutants with cell binding amino acid motifs derived from several proteins, the stabilities of the mutants against proteases during purification and storage, and a simple and rapid functional assay to quantitatively determine adhesion strengths by centrifugal adhesion assay. Among the mutants, we found that cells on TMV expressing RGD motifs formed filopodial extensions with weaker attachment profiles, whereas the cells on TMV expressing collagen I mimetic sequence displayed little spreading but higher attachment strengths.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号