首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18021篇
  免费   1513篇
  国内免费   23篇
  19557篇
  2023年   125篇
  2022年   239篇
  2021年   453篇
  2020年   205篇
  2019年   313篇
  2018年   392篇
  2017年   335篇
  2016年   512篇
  2015年   831篇
  2014年   906篇
  2013年   1202篇
  2012年   1388篇
  2011年   1371篇
  2010年   864篇
  2009年   719篇
  2008年   1085篇
  2007年   1103篇
  2006年   980篇
  2005年   951篇
  2004年   876篇
  2003年   817篇
  2002年   786篇
  2001年   267篇
  2000年   275篇
  1999年   260篇
  1998年   222篇
  1997年   135篇
  1996年   122篇
  1995年   141篇
  1994年   136篇
  1993年   125篇
  1992年   146篇
  1991年   111篇
  1990年   116篇
  1989年   112篇
  1988年   100篇
  1987年   71篇
  1986年   75篇
  1985年   81篇
  1984年   70篇
  1983年   56篇
  1982年   47篇
  1981年   56篇
  1980年   53篇
  1979年   51篇
  1978年   35篇
  1977年   36篇
  1976年   27篇
  1974年   25篇
  1973年   27篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
We present here the first structural information for HspBP1, an Hsp70 cochaperone. Using circular dichroism, HspBP1 was determined to be 35% helical. Although HspBP1 is encoded by seven exons, limited proteolysis shows that it has only two structural domains. Domain I, amino acids 1-83, is largely unstructured. Domain II, amino acids 84-359, is predicted to be 43% helical using circular dichroism. Using limited proteolysis we have also shown that HspBP1 association changes the conformation of the ATPase domain of Hsp70. Only domain II of HspBP1 is required to bring about this conformational change. Truncation mutants of HspBP1 were tested for their ability to inhibit the renaturation of luciferase and bind to Hsp70 in reticulocyte lysate. A carboxyl terminal truncation mutant that was slightly longer than domain I was inactive in these assays, but domain II was sufficient to perform both functions. Domain II was less active than full-length HspBP1 in these assays, and addition of amino acids from domain I improved both functions. These studies show that HspBP1 domain II can bind Hsp70, change the conformation of the ATPase domain, and inhibit Hsp70-associated protein folding.  相似文献   
992.
mu-Conotoxins (mu-CTXs) block skeletal muscle Na(+) channels with an affinity 1-2 orders of magnitude higher than cardiac and brain Na(+) channels. Although a number of conserved pore residues are recognized as critical determinants of mu-CTX block, the molecular basis of isoform-specific toxin sensitivity remains unresolved. Sequence comparison of the domain II (DII) S5-S6 loops of rat skeletal muscle (mu1, Na(v)1.4), human heart (hh1, Na(v)1.5), and rat brain (rb1, Na(v)1.1) Na(+) channels reveals substantial divergence in their N-terminal S5-P linkers even though the P-S6 and C-terminal P segments are almost identical. We used Na(v)1.4 as the backbone and systematically converted these DII S5-P isoform variants to the corresponding residues in Na(v)1.1 and Na(v)1.5. The Na(v)1.4-->Na(v)1.5 variant substitutions V724R, C725S, A728S, D730S, and C731S (Na(v)1.4 numbering) reduced block of Na(v)1.4 by 4-, 86-, 12-, 185-, and 55-fold respectively, rendering the skeletal muscle isoform more "cardiac-like." Conversely, an Na(v)1.5--> Na(v)1.4 chimeric construct in which the Na(v)1.4 DII S5-P linker replaces the analogous segment in Na(v)1.5 showed enhanced mu-CTX block. However, these variant determinants are conserved between Na(v)1.1 and Na(v)1.4 and thus cannot explain their different sensitivities to mu-CTX. Comparison of their sequences reveals two variants at Na(v)1.4 positions 729 and 732: Ser and Asn in Na(v)1.4 compared with Thr and Lys in Na(v)1.1, respectively. The double mutation S729T/N732K rendered Na(v)1.4 more "brain-like" (30-fold downward arrow in block), and the converse mutation T925S/K928N in Na(v)1.1 reproduced the high affinity blocking phenotype of Na(v)1.4. We conclude that the DII S5-P linker, although lying outside the conventional ion-conducting pore, plays a prominent role in mu-CTX binding, thus shaping isoform-specific toxin sensitivity.  相似文献   
993.
The pKa of the catalytic Tyr-9 in glutathione S-transferase (GST) A1-1 is lowered from 10.3 to approximately 8.1 in the apoenzyme and approximately 9.0 with a GSH conjugate bound at the active site. However, a clear functional role for the unusual Tyr-9 pKa has not been elucidated. GSTA1-1 also includes a dynamic C terminus that undergoes a ligand-dependent disorder-to-order transition. Previous studies suggest a functional link between Tyr-9 ionization and C-terminal dynamics. Here we directly probe the role of Tyr-9 ionization in ligand binding and C-terminal conformation. An engineered mutant of rGSTA1-1, W21F/F222W, which contains a single Trp at the C terminus, was used as a fluorescent reporter of pH-dependent C-terminal dynamics. This mutant exhibited a pH-dependent change in Trp-222 emission properties consistent with changes in C-terminal solvation or conformation. The apparent pKa values for the conformational transition were 7.9 +/- 0.1 and 9.3 +/- 0.1 for the apoenzyme and ligand-bound enzyme, respectively, in excellent agreement with the pKa for Tyr-9 in these states. The Y9F/W21F/F222W mutant, however, exhibited no such pH-dependent changes. Time-resolved fluorescence anisotropy studies revealed a ligand-dependent, Tyr-9-dependent, change in the order parameter of Trp-222. However, no pH dependence was observed. In equilibrium and pre-steady-state ligand binding studies, product conjugate had a decreased equilibrium binding affinity (KD), concomitant with increased binding and dissociation rates, at higher pH values. Furthermore, the recovered pKa values for the pH-dependent microscopic rate constants ranged from 7.7 to 8.4, also in agreement with the pKa of Tyr-9. In contrast, the Y9F/W21F/F222W mutant had no pH-dependent transition in KD or rate constants for ligand binding or dissociation. The combined results indicate that the macroscopic populations of "open" and "closed" states of the C terminus are not determined solely by the ionization state of Tyr-9. However, the rates of transition between these states are faster for the ionized Tyr-9. The ionized Tyr-9 states provide a parallel pathway for product dissociation, which is kinetically and thermodynamically favored. In silico kinetic models further support the functional role for the parallel dissociation pathway provided by ionized Tyr-9.  相似文献   
994.
Acid-sensing ion channels in malignant gliomas   总被引:6,自引:0,他引:6  
High grade glioma cells derived from patient biopsies express an amiloride-sensitive sodium conductance that has properties attributed to the human brain sodium channel family, also known as acid-sensing ion channels (ASICs). This amiloride-sensitive conductance was not detected in cells obtained from normal brain tissue or low grade or benign tumors. Differential gene profiling data showed that ASIC1 and ASIC2 mRNA were present in normal and low grade tumor cells. Although ASIC1 was present in all of the high grade glial cells examined, ASIC2 mRNA was detected in less than half. The main purpose of our work was to examine the molecular mechanisms that may underlie the constitutively activated sodium currents present in high grade glioma cells. Our results show that 1) gain-of-function mutations of ASIC1 were not present in a number of freshly resected and cultured high grade gliomas, 2) syntaxin 1A inhibited ASIC currents only when ASIC1 and ASIC2 were co-expressed, and 3) the inhibition of ASIC currents by syntaxin 1A had an absolute requirement for either gamma- or delta-hENaC. Transfection of cultured cells originally derived from high grade gliomas (U87-MG and SK-MG1) with ASIC2 abolished basal amiloride-sensitive sodium conductance; this inhibition was reversed by dialysis of the cell interior with Munc-18, a syntaxin-binding protein that typically blocks the interaction of syntaxin with other proteins. Thus, syntaxin 1A cannot inhibit Na(+) permeability in the absence of adequate plasma membrane ASIC2 expression, accounting for the observed functional expression of amiloride-sensitive currents in high grade glioma cells.  相似文献   
995.
This article describes a procedure for the quantitation of the isoprostane 15-F2t-IsoP (9a,11a,15S-trihydroxy-(8b)-prosta-5Z,13E-dien-1-oic acid [CAS#27415-26-5] formerly known as 8-epi-PGF2a or 8-iso-PGF2a, and also as iPF2a-III). We have combined features from several earlier methods for 15-F2t-IsoP and prostaglandins, and identified and modified those steps that may lead to poor recoveries. The resulting protocol is precise and reliable, and was validated by a blind time-course study of plasma levels in rats treated with 120 and 1200 mg CCl4/kg body weight. Plasma levels of 15-F2t-IsoP, as measured according to the procedure described above, are good indicators of acute oxidative stress as induced by CCl4. The precision of the measurements allows detection of elevated plasma 15-F2t-IsoP levels as long as 16 h after an acute exposure of 120 mg CCl4/kg body weight, and 2 h after an exposure of 1 mg CCl4/kg body weight. The results of this low-dose, pilot study suggest that this method has sufficient analytical precision to allow the detection of the small changes in plasma isoprostane levels, which result from chronic and/or lower-level exposures to agents causing oxidative stress.  相似文献   
996.
997.
The use of molecular genetic techniques can aidwildlife managers in setting priorities anddevising management strategies for scatteredpopulations of threatened taxa. In this study,six remnant populations of the criticallyendangered brush-tailed rock-wallaby (Petrogale penicillata) in Victoria, Australia,were examined using karyotypic, microsatellite(11 loci) and mitochondrial DNA (mtDNA) controlregion sequence analysis. Each remnantpopulation was found to be genetically distinct(unique microsatellite alleles and controlregion haplotypes), but had low geneticdiversity. This distribution of geneticdiversity between, rather than withinpopulations, is most likely a consequence ofrecent severe reductions in population size anddispersal that have occurred since Europeansettlement. The six mtDNA control regionhaplotypes identified in the Victorianpopulations were all closely related (average1.3% sequence divergence), and only 2%divergence separated haplotypes from EastGippsland and the Grampians (550 km to thewest). In contrast there was considerablesequence divergence (7.7%) between theVictorian haplotypes and those found in P.penicillata from elsewhere in the speciesrange. In comparison, 8.8% divergenceseparates P. penicillata from the closelyrelated P. herberti. The Victorianhaplotypes also formed a distinct and wellsupported monophyletic group that excludedhaplotypes from other P. penicillata andP. herberti. In light of these data, werecommend that the remnant Victorianpopulations of P. penicillata be managedseparately from remaining populations in NewSouth Wales and Queensland; and thatindividuals be regularly exchanged amongst theVictorian populations to increase theirdiversity and reduce the likelihood ofinbreeding depression.  相似文献   
998.
The ITGB4BP gene encodes for a highly conserved protein, named p27BBP (also known as eIF6), originally identified in mammals as a cytoplasmic interactor of beta4 integrin. In vitro and in vivo studies demonstrated that p27BBP is essential for cell viability and has a primary function in the biogenesis of the 60S ribosomal subunit. Here we report the genomic organization of the human ITGB4BP gene and show that its gene product is expressed with features of a housekeeping element in vitro, but is regulated in a cell specific fashion in vivo. The human gene spans 10 kb and comprises seven exons and six introns. The 5' flanking region shows a TATA-less promoter, canonical CpG islands, and binding sites for serum responsive elements. In cultured cells, p27BBP mRNA and protein are constitutively expressed and stable. A gradual loss of p27BBP mRNA can be observed only after prolonged serum starvation, and heat shock treatment. In contrast, p27BBP mRNA and protein levels in vivo are variable among different organs. More strikingly, immunohistochemical analysis shows that the p27BBP protein is present in a cell specific fashion, even within the same tissue. Taken together, these data show that ITGB4BP gene expression is highly regulated in vivo, possibly by the combination of tissue specific factors and protein synthesis pathways.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号