首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6388篇
  免费   561篇
  国内免费   21篇
  6970篇
  2024年   7篇
  2023年   65篇
  2022年   129篇
  2021年   220篇
  2020年   99篇
  2019年   162篇
  2018年   179篇
  2017年   174篇
  2016年   224篇
  2015年   337篇
  2014年   330篇
  2013年   421篇
  2012年   508篇
  2011年   468篇
  2010年   298篇
  2009年   231篇
  2008年   324篇
  2007年   329篇
  2006年   284篇
  2005年   273篇
  2004年   208篇
  2003年   185篇
  2002年   221篇
  2001年   150篇
  2000年   192篇
  1999年   132篇
  1998年   57篇
  1997年   34篇
  1996年   37篇
  1995年   47篇
  1994年   40篇
  1993年   33篇
  1992年   69篇
  1991年   59篇
  1990年   58篇
  1989年   58篇
  1988年   45篇
  1987年   34篇
  1986年   43篇
  1985年   45篇
  1984年   25篇
  1983年   21篇
  1982年   14篇
  1981年   16篇
  1980年   8篇
  1979年   15篇
  1978年   12篇
  1977年   14篇
  1976年   7篇
  1972年   6篇
排序方式: 共有6970条查询结果,搜索用时 15 毫秒
71.
Analysis of the CTX prophage and RS1 element in hybrid and altered Vibrio cholera O1 strains showed two classifiable groups. Group I strains contain a tandem repeat of classical CTX prophage on the small chromosome. Strains in this group either contain no element(s) or an additional CTX prophage or RS1 element(s) on the large chromosome. Group II strains harbor RS1 and CTX prophage, which has an E1 Tor type rstR and classical ctxB on the large chromosome.  相似文献   
72.
The glucose-6-phosphate/phosphate translocator (GPT) acts as an importer of carbon into the plastid. Despite the potential importance of GPT for storage in crop seeds, its regulatory role in biosynthetic pathways that are active during seed development is poorly understood. We have isolated GPT1 from Vicia narbonensis and studied its role in seed development using a transgenic approach based on the seed-specific legumin promoter LeB4. GPT1 is highly expressed in vegetative sink tissues, flowers and young seeds. In the embryo, localized upregulation of GPT1 at the onset of storage coincides with the onset of starch accumulation. Embryos of transgenic plants expressing antisense GPT1 showed a significant reduction (up to 55%) in the specific transport rate of glucose-6-phosphate as determined using proteoliposomes prepared from embryos. Furthermore, amyloplasts developed later and were smaller in size, while the expression of genes encoding plastid-specific translocators and proteins involved in starch biosynthesis was decreased. Metabolite analysis and stable isotope labelling demonstrated that starch biosynthesis was also reduced, although storage protein biosynthesis increased. This metabolic shift was characterized by upregulation of genes related to nitrogen uptake and protein storage, morphological variation of the protein-storing vacuoles, and a crude protein content of mature seeds of transgenics that was up to 30% higher than in wild-type. These findings provide evidence that (1) the prevailing level of GPT1 abundance/activity is rate-limiting for the synthesis of starch in developing seeds, (2) GPT1 exerts a controlling function on assimilate partitioning into storage protein, and (3) GPT1 is essential for the differentiation of embryonic plastids and seed maturation.  相似文献   
73.

Background

Obesity is a major health problem. Although heritability is substantial, genetic mechanisms predisposing to obesity are not very well understood. We have performed a genome wide association study (GWA) for early onset (extreme) obesity.

Methodology/Principal Findings

a) GWA (Genome-Wide Human SNP Array 5.0 comprising 440,794 single nucleotide polymorphisms) for early onset extreme obesity based on 487 extremely obese young German individuals and 442 healthy lean German controls; b) confirmatory analyses on 644 independent families with at least one obese offspring and both parents. We aimed to identify and subsequently confirm the 15 SNPs (minor allele frequency ≥10%) with the lowest p-values of the GWA by four genetic models: additive, recessive, dominant and allelic. Six single nucleotide polymorphisms (SNPs) in FTO (fat mass and obesity associated gene) within one linkage disequilibrium (LD) block including the GWA SNP rendering the lowest p-value (rs1121980; log-additive model: nominal p = 1.13×10−7, corrected p = 0.0494; odds ratio (OR)CT 1.67, 95% confidence interval (CI) 1.22–2.27; ORTT 2.76, 95% CI 1.88–4.03) belonged to the 15 SNPs showing the strongest evidence for association with obesity. For confirmation we genotyped 11 of these in the 644 independent families (of the six FTO SNPs we chose only two representing the LD bock). For both FTO SNPs the initial association was confirmed (both Bonferroni corrected p<0.01). However, none of the nine non-FTO SNPs revealed significant transmission disequilibrium.

Conclusions/Significance

Our GWA for extreme early onset obesity substantiates that variation in FTO strongly contributes to early onset obesity. This is a further proof of concept for GWA to detect genes relevant for highly complex phenotypes. We concurrently show that nine additional SNPs with initially low p-values in the GWA were not confirmed in our family study, thus suggesting that of the best 15 SNPs in the GWA only the FTO SNPs represent true positive findings.  相似文献   
74.
Estrogen receptor alpha (ERalpha)/Sp1 activation of GC-rich gene promoters in breast cancer cells is dependent, in part, on activation function 1 (AF1) of ERalpha, and this study investigates contributions of the DNA binding domain (C) and AF2 (DEF) regions of ERalpha on activation of ERalpha/Sp1. 17Beta-estradiol (E2) and the antiestrogens 4-hydroxytamoxifen and ICI 182,780 induced reporter gene activity in MCF-7 and MDA-MB-231 cells cotransfected with human or mouse ERalpha (hERalpha or MOR), but not ERbeta and GC-rich constructs containing three tandem Sp1 binding sites (pSp13) or other E2-responsive GC-rich promoters. Estrogen and antiestrogen activation of hERalpha/Sp1 was dependent on overlapping and different regions of the C, D, E, and F domains of ERalpha. Antiestrogen-induced activation of hERalpha/Sp1 was lost using hERalpha mutants deleted in zinc finger 1 [amino acids (aa) 185-205], zinc finger 2 (aa 218-245), and the hinge/helix 1 (aa 265-330) domains. In contrast with antiestrogens, E2-dependent activation of hERalpha/Sp1 required the C-terminal F domain (aa 579-595), which contains a beta-strand structural motif. Moreover, in peptide competition experiments overexpression of a C-terminal (aa 575-595) F domain peptide specifically blocked E2-dependent activation of hERalpha/Sp1, suggesting that F domain interactions with nuclear cofactors are required for ERalpha/Sp1 action.  相似文献   
75.
Short-chain acyl-CoA dehydrogenase (hSCAD) catalyzes the first matrix step in the mitochondrial beta-oxidation cycle with optimal activity toward butyryl- and hexanoyl-CoA. Two common variants of this enzyme encoding G185S and R147W substitutions have been identified at an increased frequency compared to the general population in patients with a wide variety of clinical problems, but functional studies of the purified mutant enzymes have shown only modestly changed kinetic properties. Moreover, both amino acid residues are located quite far from the catalytic pocket and the essential FAD cofactor. To clarify the potential relationship of these variants to clinical disease, we have further investigated their thermodynamic properties using spectroscopic and electrochemical techniques. Purified R147W hSCAD exhibited almost identical physical and redox properties to wild-type but only half of the specific activity and substrate activation shifts observed in wild-type enzyme. In contrast, the G185S mutant proved to have impairments of both its kinetic and electron transfer properties. Spectroelectrochemical studies reveal that G185S binding to the substrate/product couple produces an enzyme potential shift of only +88 mV, which is not enough to make the reaction thermodynamically favorable. For wild-type hSCAD, this barrier is overcome by a negative shift in the substrate/product couple midpoint potential, but in G185S this activation was not observed. When G185S was substrate bound, the midpoint potential of the enzyme actually shifted more negative. These results provide valuable insight into the mechanistic basis for dysfunction of the common variant hSCADs and demonstrate that mutations, regardless of their position in the protein structure, can have a large impact on the redox properties of the enzyme.  相似文献   
76.
We hypothesized that host antiviral genes induced by type I interferons might affect the natural course of severe acute respiratory syndrome (SARS). We analyzed single nucleotide polymorphisms (SNPs) of 2',5'-oligoadenylate synthetase 1 (OAS-1), myxovirus resistance-A (MxA), and double-stranded RNA-dependent protein kinase in 44 Vietnamese SARS patients with 103 controls. The G-allele of non-synonymous A/G SNP in exon 3 of OAS-1 gene showed association with SARS (p=0.0090). The G-allele in exon 3 of OAS-1 and the one in exon 6 were in strong linkage disequilibrium and both of them were associated with SARS infection. The GG genotype and G-allele of G/T SNP at position -88 in the MxA gene promoter were found more frequently in hypoxemic group than in non-hypoxemic group of SARS (p=0.0195). Our findings suggest that polymorphisms of two IFN-inducible genes OAS-1 and MxA might affect susceptibility to the disease and progression of SARS at each level.  相似文献   
77.
Ascomycete yeasts that both ferment and assimilate xylose were reported previously as associates of insects living in woody substrates. Most notable have been reports of Pichia stipitis-like yeasts that are widely associated with the wood-boring beetle, Odontotaenius disjunctus (Coleoptera: Passalidae), in the eastern United States. Our continuing investigation of insect gut yeasts has lead to the discovery of two new xylose-fermenting yeasts that phylogenetic analysis places as sister taxa. The beetle hosts, O. disjunctus and Phrenapates bennetti (Coleoptera: Tenebrionidae), are similar in habitat and appearance, and the presence of similar gut yeasts is an additional common feature between them. Here we describe the new yeast genus Spathaspora, the type species S. passalidarum, and its sister taxon Candida jeffriesii and discuss their natural history, including a comparison with Pichia stipitis, another member of a guild of xylose-fermenting yeasts with similar metabolic traits. In addition a morphologically distinct yeast ascospore type is described for Spathaspora.  相似文献   
78.
Sesquiterpene lactones are characteristic natural products in Asteraceae, which constitutes ∼8% of all plant species. Despite their physiological and pharmaceutical importance, the biochemistry and evolution of sesquiterpene lactones remain unexplored. Here we show that germacrene A oxidase (GAO), evolutionarily conserved in all major subfamilies of Asteraceae, catalyzes three consecutive oxidations of germacrene A to yield germacrene A acid. Furthermore, it is also capable of oxidizing non-natural substrate amorphadiene. Co-expression of lettuce GAO with germacrene synthase in engineered yeast synthesized aberrant products, costic acids and ilicic acid, in an acidic condition. However, cultivation in a neutral condition allowed the de novo synthesis of a single novel compound that was identified as germacrene A acid by gas and liquid chromatography and NMR analyses. To trace the evolutionary lineage of GAO in Asteraceae, homologous genes were further isolated from the representative species of three major subfamilies of Asteraceae (sunflower, chicory, and costus from Asteroideae, Cichorioideae, and Carduoideae, respectively) and also from the phylogenetically basal species, Barnadesia spinosa, from Barnadesioideae. The recombinant GAOs from these genes clearly showed germacrene A oxidase activities, suggesting that GAO activity is widely conserved in Asteraceae including the basal lineage. All GAOs could catalyze the three-step oxidation of non-natural substrate amorphadiene to artemisinic acid, whereas amorphadiene oxidase diverged from GAO displayed negligible activity for germacrene A oxidation. The observed amorphadiene oxidase activity in GAOs suggests that the catalytic plasticity is embedded in ancestral GAO enzymes that may contribute to the chemical and catalytic diversity in nature.  相似文献   
79.
Steroid concentrations during late pregnancy and early lactation may be affected by both a female's reproductive history and her current condition, and may in turn predict subsequent life-history events, such as offspring survival. This study investigated these relationships in a wild primate population through the use of fecal steroid analysis in repeated sampling of peripartum baboons (Papio cynocephalus). Fecal samples were collected from 32 females in five groups within the Amboseli basin during 8 weeks prior to parturition and 13 weeks postpartum. From December 1999 through February 2002, 176 fecal samples were collected from individuals representing 39 peripartum periods. Fecal concentrations of progestins (fP), estrogen metabolites (fE), glucocorticoids (fGC), and testosterone metabolites (fT) were measured by radioimmunoassay. Steroid concentrations declined from late pregnancy to lactation, and the decline was greatest and most precipitous for fE and fP. Primiparous females had significantly higher mean fE concentrations in each of the last 2 months of pregnancy compared to multiparous females. Among multiparous females, fE and fT were significantly higher during late pregnancy in females carrying a male fetus compared to those carrying a female fetus. During early lactation, high fT in young mothers predicted subsequent infant death during the first year of life. These findings illustrate the potential power of repeated fecal-steroid sampling to elucidate mechanisms of life-history variability in natural populations. They also document significant differences in hormone profiles among subgroups, and highlight that such normative subgroup information is essential for interpreting individual variability in hormone-behavior associations.  相似文献   
80.
Macrophages are important mediators of the immune response to infection by virtue of their ability to secrete cytokines that trigger inflammation. Toll-like receptors (TLRs) are largely responsible for meditating the activation of macrophages by pathogens. IRAK-1 is a proximal protein kinase in TLR signalling pathways and hence its activation must be tightly regulated. However, the mechanisms which control the activation of IRAK-1 are poorly understood. IRAK-1 contains a death domain at its N-terminus that mediates its interaction with other death domain containing proteins, a central Ser/Thr kinase domain, and a C-terminal domain that contains binding motifs for TRAF6. We show here that deletion of the death domain or the majority of the C-terminal domain markedly enhanced the capacity of IRAK-1 to activate NF-κB in a TLR-independent manner in RAW 264.7 macrophages. Furthermore, the C-terminal truncation mutant spontaneously oligomerised and formed complexes with the negative regulator IRAK-M in the absence of TLR activation. In contrast to the binding of IRAK-M to IRAK-1, the death domain of IRAK-1 was not required for the interaction of IRAK-4 with IRAK-1. On the basis of these results we propose a model in which IRAK-1 is held in a closed, inactive conformation via an intramolecular mechanism involving its C-terminal domain and possibly the death domain. Phosphorylation of IRAK-1 by IRAK-4 in response to TLR activation may then release IRAK-1 from the inhibitory constraint exerted by its C-terminal domain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号