首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8202篇
  免费   712篇
  国内免费   15篇
  2024年   8篇
  2023年   74篇
  2022年   110篇
  2021年   273篇
  2020年   121篇
  2019年   204篇
  2018年   243篇
  2017年   224篇
  2016年   300篇
  2015年   411篇
  2014年   433篇
  2013年   574篇
  2012年   677篇
  2011年   609篇
  2010年   391篇
  2009年   311篇
  2008年   447篇
  2007年   448篇
  2006年   388篇
  2005年   346篇
  2004年   273篇
  2003年   252篇
  2002年   290篇
  2001年   178篇
  2000年   226篇
  1999年   161篇
  1998年   64篇
  1997年   39篇
  1996年   42篇
  1995年   53篇
  1994年   41篇
  1993年   34篇
  1992年   83篇
  1991年   75篇
  1990年   71篇
  1989年   65篇
  1988年   52篇
  1987年   41篇
  1986年   46篇
  1985年   55篇
  1984年   33篇
  1983年   24篇
  1982年   16篇
  1981年   20篇
  1980年   9篇
  1979年   19篇
  1978年   13篇
  1977年   12篇
  1976年   9篇
  1974年   9篇
排序方式: 共有8929条查询结果,搜索用时 62 毫秒
991.
Elongation factor G (EF-G) is one of several GTP hydrolytic proteins (GTPases) that cycles repeatedly on and off the ribosome during protein synthesis in bacterial cells. In the functional cycle of EF-G, hydrolysis of guanosine 5′-triphosphate (GTP) is coupled to tRNA-mRNA translocation in ribosomes. GTP hydrolysis induces conformational rearrangements in two switch elements in the G domain of EF-G and other GTPases. These switch elements are thought to initiate the cascade of events that lead to translocation and EF-G cycling between ribosomes. To further define the coupling mechanism, we developed a new fluorescent approach that can detect intramolecular movements in EF-G. We attached a fluorescent probe to the switch I element (sw1) of Escherichia coli EF-G. We monitored the position of the sw1 probe, relative to another fluorescent probe anchored to the GTP substrate or product, by measuring the distance-dependent, Förster resonance energy transfer between the two probes. By analyzing EF-G trapped at five different functional states in its cycle, we could infer the cyclical movements of sw1 within EF-G. Our results provide evidence for conformational changes in sw1, which help to drive the unidirectional EF-G cycle during protein synthesis. More generally, our approach might also serve to define the conformational dynamics of other GTPases with their cellular receptors.  相似文献   
992.
Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus associated with several serious diseases, such as adult T-cell leukemia and tropical spastic paraparesis/myelopathy. For a number of years, the protease (PR) encoded by HTLV-1 has been a target for designing antiviral drugs, but that effort was hampered by limited available structural information. We report a high-resolution crystal structure of HTLV-1 PR complexed with a statine-containing inhibitor, a significant improvement over the previously available moderate-resolution structure. We also report crystal structures of the complexes of HTLV-1 PR with five different inhibitors that are more compact and more potent. A detailed study of structure-activity relationships was performed to interpret in detail the influence of the polar and hydrophobic interactions between the inhibitors and the protease.  相似文献   
993.
Mycobacterium tuberculosis EsxA and EsxB proteins are founding members of the WXG100 (WXG) protein family, characterized by their small size (∼100 amino acids) and conserved WXG amino acid motif. M. tuberculosis contains 11 tandem pairs of WXG genes; each gene pair is thought to be coexpressed to form a heterodimer. The precise role of these proteins in the biology of M. tuberculosis is unknown, but several of the heterodimers are secreted, which is important for virulence. However, WXG proteins are not simply virulence factors, since nonpathogenic mycobacteria also express and secrete these proteins. Here we show that three WXG heterodimers have structures and properties similar to those of the M. tuberculosis EsxBA (MtbEsxBA) heterodimer, regardless of their host species and apparent biological function. Biophysical studies indicate that the WXG proteins from M. tuberculosis (EsxG and EsxH), Mycobacterium smegmatis (EsxA and EsxB), and Corynebacterium diphtheriae (EsxA and EsxB) are heterodimers and fold into a predominately α-helical structure. An in vivo protein-protein interaction assay was modified to identify proteins that interact specifically with the native WXG100 heterodimer. MtbEsxA and MtbEsxB were fused into a single polypeptide, MtbEsxBA, to create a biomimetic bait for the native heterodimer. The MtbEsxBA bait showed specific association with several esx-1-encoded proteins and EspA, a virulence protein secreted by ESX-1. The MtbEsxBA fusion peptide was also utilized to identify residues in both EsxA and EsxB that are important for establishing protein interactions with Rv3871 and EspA. Together, the results are consistent with a model in which WXG proteins perform similar biological roles in virulent and nonvirulent species.The WXG100 (WXG; pfam06013) proteins are a class of effector molecules found in gram-positive bacteria (26). WXG proteins are characterized by their small size (∼ 100 amino acids [aa]) and the presence of a WXG motif, or its structural equivalent, near the midpoint of their primary sequence (26). Bioinformatic analyses have shown that one WXG gene is frequently positioned near, or directly adjacent to, a second, related, WXG gene (14). The gene pairs characterized thus far encode proteins that associate to form 1:1 complexes (20, 31). The WXG proteins were once thought to be restricted to the mycobacteria, but homologues have now been detected in species of Bacillus, Listeria, Streptomyces, and Corynebacterium, among others, and the Pfam server lists >89 distinct WXG-encoding species and strains (10).The identification of WXG proteins encoded by the pathogens Mycobacterium tuberculosis (15, 17, 19, 36), Mycobacterium marinum (13), and Staphylococcus aureus (5) has created significant interest in the proteins'' biological activity. Nevertheless, these proteins are not a priori virulence factors (39), since organisms expressing WXG proteins are not necessarily capable of causing disease. In addition to pathogenesis, the WXG proteins are associated with processes as disparate as zinc homeostasis (24) and conjugal gene transfer (9, 11). A model for the mechanism(s) of action of these proteins that includes an explanation for their apparent functional versatility is at present lacking. One reason for this ambiguity may be the near-absence of studies comparing virulence-associated and non-virulence-associated WXG proteins, which is a goal of this study.The M. tuberculosis secreted virulence factors EsxA (also called ESAT-6, or Rv3875) and EsxB (CFP-10; Rv3874) are the founding members of the WXG family, and M. tuberculosis derivatives defective in EsxA and EsxB are attenuated (17, 19, 36). The results of biochemical and structural studies indicate that EsxA and EsxB form a tightly associated heterodimer, EsxAB (25, 30, 31). The M. tuberculosis genome contains 23 WXG genes, named esxA to esxW, and the majority of these are expressed as tandem pairs (26). Of the pairs, five, including esxA and esxB, are contained within larger, highly conserved genetic loci, called esx-1 to esx-5 (Fig. (Fig.1).1). These loci have been the focus of much research, since mutants of esx-1 are attenuated, and esx-3 and esx-5 are necessary for in vitro growth of M. tuberculosis and M. marinum (1, 2, 32-34). The esx loci are proposed to encode secretory apparatuses dedicated to the secretion of their cognate WXG proteins (1).Open in a separate windowFIG. 1.Genetic map of the esx-1 loci of M. tuberculosis and M. smegmatis. The M. tuberculosis esx-1 genes discussed in the text are indicated by white arrows, as are their M. smegmatis homologues. The M. tuberculosis map also shows the Rv3884 and Rv3885 genes, which are part of the adjacent esx-2 locus. pRD1-2F9 is the cosmid that was used to create an esx-1-specific prey library. pRD1-2F9 includes the Rv3860 to Rv3885 genes, thus encompassing the entire esx-1 locus and part of esx-2. The four genes below the M. smegmatis map include defective insertion sequences (ISs) inserted into MSMEG_0075.Although the majority of genes required for the secretion of the EsxAB heterodimer are encoded from within esx-1, additional non-esx-1 genes are necessary for secretion. In particular, one M. tuberculosis locus, esp, encodes three proteins essential for EsxAB secretion (12, 23). The first gene of the operon encodes a protein, EspA, that is cosecreted with EsxAB via the ESX-1 apparatus (12). Although no direct physical evidence has been presented, the inference from the interdependent cosecretion of the three proteins is that they likely form a complex, which is secreted by the ESX-1 apparatus. In this paper we provide the first genetic evidence that these three proteins interact.The lack of a genetic assay for the study of ESX-1 activity in M. tuberculosis has hindered the identification of all of the protein components of the apparatus and all of the substrates that it secretes. However, the fast-growing, nonpathogenic organism Mycobacterium smegmatis has a conserved esx-1 locus that is essential for DNA transfer, and we have exploited this requirement for genetic studies (9). These analyses have shown that the M. smegmatis ESX-1 apparatus is functionally related to that of M. tuberculosis (11) and that M. smegmatis encodes non-esx-1 genes necessary for the secretion of the EsxAB heterodimer, including orthologues of EspA (9).Here we have examined whether the secondary and quaternary structures of M. tuberculosis EsxA and EsxB are prototypical for other, functionally distinct and evolutionarily distant members of the WXG family (Fig. (Fig.2A).2A). Comparisons were made to homologues encoded by M. smegmatis (esxA and esxB), Corynebacterium diphtheriae (esxA and esxB), and an additional non-virulence-related pair from M. tuberculosis (esxG and esxH, encoded from the esx-3 locus). Structural characterization of these proteins establishes that their secondary and quaternary structures are conserved, with each pair folding into a predominately α-helical structure and associating to form a heterodimer. We next devised and tested the utility of a novel strategy to identify proteins that interact specifically with these WXG heterodimers. This involved fusing EsxB and EsxA to create a biomimetic heterodimer for use in mycobacterial two-hybrid experiments. We reasoned that the use of this unique bait would allow the detection of proteins that interact with both components of the native heterodimer and that these proteins would normally go undetected in the conventional, single-protein two-hybrid screens. Indeed, using this approach, we identified novel protein partners of M. tuberculosis EsxBA (MtbEsxBA). We show for the first time that EspA proteins from M. tuberculosis and M. smegmatis interact with the EsxBA heterodimer (from both species) but not with EsxA or EsxB alone. We also provide evidence for promiscuity between the different M. tuberculosis ESX apparatuses by showing that EsxBA, encoded by esx-1, can interact with Esx proteins encoded by esx-2. Taken together, our studies suggest that the WXG proteins possess similar structures and properties, regardless of the host species and the apparent biological function.Open in a separate windowFIG. 2.Sequence alignment of WXG proteins characterized in this study and the strategy used to facilitate their expression. (A) Amino acid sequence alignment of four pairs of WXG proteins. Conserved sequences are in boldface, and the signature WXG motif is indicated with asterisks. Three residues in Rv3874 (EsxB) and a single residue in Rv3875 (EsxA) are underlined; they are the sites of amino acid substitutions discussed in the text that abrogate Rv3871 interactions. (B) (Bottom) Scheme for coexpression of tandemly arranged WXG genes. (Top) The ribbon cartoon (30) shows how the two monomers are freed from the expressed fusion protein by thrombin cleavage (scissors) at the peptide tether (balls and sticks).  相似文献   
994.
995.
IgG1 antibodies produced in Chinese hamster ovary (CHO) cells are heavily α1,6‐fucosylated, a modification that reduces antibody‐dependent cellular cytotoxicity (ADCC) and can inhibit therapeutic antibody function in vivo. Addition of fucose is catalyzed by Fut8, a α1,6‐fucosyltransferase. FUT8?/? CHO cell lines produce completely nonfucosylated antibodies, but the difficulty of recapitulating the knockout in protein‐production cell lines has prevented the widespread adoption of FUT8?/? cells as hosts for antibody production. We have created zinc‐finger nucleases (ZFNs) that cleave the FUT8 gene in a region encoding the catalytic core of the enzyme, allowing the functional disruption of FUT8 in any CHO cell line. These reagents produce FUT8?/? CHO cells in 3 weeks at a frequency of 5% in the absence of any selection. Alternately, populations of ZFN‐treated cells can be directly selected to give FUT8?/? cell pools in as few as 3 days. To demonstrate the utility of this method in bioprocess, FUT8 was disrupted in a CHO cell line used for stable protein production. ZFN‐derived FUT8?/? cell lines were as transfectable as wild‐type, had similar or better growth profiles, and produced equivalent amounts of antibody during transient transfection. Antibodies made in these lines completely lacked core fucosylation but had an otherwise normal glycosylation pattern. Cell lines stably expressing a model antibody were made from wild‐type and ZFN‐generated FUT8?/? cells. Clones from both lines had equivalent titer, specific productivity distributions, and integrated viable cell counts. Antibody titer in the best ZFN‐generated FUT8?/? cell lines was fourfold higher than in the best‐producing clones of FUT8?/? cells made by standard homologous recombination in a different CHO subtype. These data demonstrate the straightforward, ZFN‐mediated transfer of the Fut8? phenotype to a production CHO cell line without adverse phenotypic effects. This process will speed the production of highly active, completely nonfucosylated therapeutic antibodies. Biotechnol. Bioeng. 2010;106: 774–783. © 2010 Wiley Periodicals, Inc.  相似文献   
996.
THIOMABs are recombinant antibodies engineered with reactive cysteines, which can be covalently conjugated to drugs of interest to generate targeted therapeutics. During the analysis of THIOMABs secreted by stably transfected Chinese Hamster Ovary (CHO) cells, we discovered the existence of a new species—Triple Light Chain Antibody (3LC). This 3LC species is the product of a disulfide bond formed between an extra light chain and one of the engineered cysteines on the THIOMAB. We characterized the 3LC by size exclusion chromatography, mass spectrometry, and microchip electrophoresis. We also investigated the potential causes of 3LC formation during cell culture, focusing on the effects of free light chain (LC) polypeptide concentration, THIOMAB amino acid sequence, and glutathione (GSH) production. In studies covering 12 THIOMABs produced by 66 stable cell lines, increased free LC polypeptide expression—evaluated as the ratio of mRNA encoding for LC to the mRNA encoding for heavy chain (HC)—correlated with increased 3LC levels. The amino acid sequence of the THIOMAB molecule also impacted its susceptibility to 3LC formation: hydrophilic LC polypeptides showed elevated 3LC levels. Finally, increased GSH production—evaluated as the ratio of the cell‐specific production rate of GSH (qGSH) to the cell‐specific production rate of THIOMAB (qp)—corresponded to decreased 3LC levels. In time‐lapse studies, changes in extracellular 3LC levels during cell culture corresponded to changes in mRNA LC/HC ratio and qGSH/qp ratio. In summary, we found that cell lines with low mRNA LC/HC ratio and high qGSH/qp ratio yielded the lowest levels of 3LC. These findings provide us with factors to consider in selecting a cell line to produce THIOMABs with minimal levels of the 3LC impurity. Biotechnol. Bioeng. 2010. 105: 748–760. © 2009 Wiley Periodicals, Inc.  相似文献   
997.
Concerning the instability of ATP liposomes formulated to easily diffuse through the liver (size ~100 nm), this work targets the key parameters that influence the freeze-drying of a preparation that combines cholesterol, DOTAP and phosphatidylcholine (either natural soybean or egg (SPC or EPC) or hydrogenated (HSPC)). After freeze-drying blank liposomes, size increased significantly when initial lipid concentration was lowered from 20 to 5 mM (p = 0.0018). With low lipid concentration preparation (5 mM), SPC limited size increase (SI) more efficiently compared to EPC or HSPC. With SPC and EPC, sucrose showed better size results compared to trehalose (Lyoprotectant/Lipid ratio (w/w) avoiding any SI: ~5 and ~10 (for SPC), ~10 and ~15 (for EPC), for sucrose and trehalose, respectively), but the opposite was evidenced with HSPC liposomes where a Trehalose/Lipid ratio of 25 barely prevented SI. In addition, slow versus quick cooling rate led to limiting SI for HSPC liposomes (p = 0.0035). With sucrose or trehalose at both Lyoprotectant/Lipid ratios ensuring size stabilisation (10:1 and 15:1, respectively), ATP leakage ranged between 38.8 ± 7.9% and 58.2 ± 1.4%. In conclusion, this study emphasizes that using strict size maintenance as the primary objective does not result in drug complete retention inside the liposome core.  相似文献   
998.
Epiblast stem cells (EpiSCs) are pluripotent cells derived from post-implantation late epiblasts in vitro. EpiSCs are incapable of contributing to chimerism, indicating that EpiSCs are less pluripotent and represent a later developmental pluripotency state compared with inner cell mass stage murine embryonic stem cells (mESCs). Using a chemical approach, we found that blockage of the TGFβ pathway or inhibition of histone demethylase LSD1 with small molecule inhibitors induced dramatic morphological changes in EpiSCs toward mESC phenotypes with simultaneous activation of inner cell mass-specific gene expression. However, full conversion of EpiSCs to the mESC-like state with chimerism competence could be readily generated only with the combination of LSD1, ALK5, MEK, FGFR, and GSK3 inhibitors. Our results demonstrate that appropriate synergy of epigenetic and signaling modulations could convert cells at the later developmental pluripotency state to the earlier mESC-like pluripotency state, providing new insights into pluripotency regulation.  相似文献   
999.
Fluoride and zinc, alone or in combination at concentrations of 0.2 mM, inhibited production-secretion of glucosyltranferases by Streptococcus mutans UA159 growing in suspension cultures. Inhibition did not involve growth inhibition or starvation. Fluoride and zinc also inhibited glucan production, especially insoluble glucan, in fed-batch biofilms. Inhibition of biofilms appeared to be associated with starvation as indicated by markedly decreased ATP pools and iodophilic polysaccharide levels in biofilm cells. As insoluble glucans are important for virulence of mutans streptococci, the inhibitory actions of fluoride and zinc could significantly affect cariogenicity.  相似文献   
1000.
The characteristic aroma compounds of Citrus natsudaidai Hayata essential oil were evaluated by a combination of instrumental and sensory methods. Sixty compounds were identified and quantified, accounting for 94.08% of the total peel oil constituents. Limonene was the most abundant compound (80.68%), followed by gamma-terpinene (5.30%), myrcene (2.25%) and alpha-pinene (1.30%). Nineteen compounds which could not be identified in the original oil were identified in the oxygenated fraction. Myrcene, linalool, alpha-pinene, beta-pinene, limonene, nonanal, gamma-terpinene, germacrene D, and perillyl alcohol were the active aroma components (FD-factor > 3(6)), whereas beta-copaene, cis-sabinene hydrate and 1-octanol were suggested as characteristic aroma compounds, having a Natsudaidai-like aroma in the GC effluent. Three other compounds, heptyl acetate, (E)-limonene oxide and 2,3-butanediol, which each showed a high RFA value (>35) were considered to be important in the reconstruction of the original Natsudaidai oil from pure odor chemicals. The results indicate that 1-octanol was the aroma impact compound of C. natsudaidai Hayata peel oil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号