首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   21篇
  2022年   3篇
  2020年   3篇
  2019年   2篇
  2018年   5篇
  2016年   4篇
  2015年   3篇
  2014年   6篇
  2013年   12篇
  2012年   11篇
  2011年   8篇
  2010年   9篇
  2009年   14篇
  2008年   10篇
  2007年   10篇
  2006年   8篇
  2005年   10篇
  2004年   9篇
  2003年   10篇
  2002年   6篇
  2001年   6篇
  2000年   4篇
  1999年   6篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   7篇
  1986年   3篇
  1985年   6篇
  1984年   3篇
  1983年   1篇
  1974年   2篇
  1969年   1篇
排序方式: 共有201条查询结果,搜索用时 265 毫秒
81.
82.
Ngai PH  Ng TB 《Peptides》2004,25(1):11-17
A 12 kDa ribonuclease preferential for poly U and with much lower activity toward poly A, poly G and poly C was isolated from fresh fruiting bodies of the mushroom Pleurotus sajor-caju. A purification procedure involving ion exchange chromatography on CM-cellulose, affinity chromatography on Red-Sepharose and Heparin-Sepharose, and fast protein liquid chromatography-gel filtration on Superdex 75 was used. The ribonuclease was adsorbed on all of the first three types of chromatographic media. It exhibited some activity toward herring sperm DNA and calf thymus DNA. The ribonuclease activity was unaffected in the presence of KCl (10 and 100 mM) and NaCl (100 mM and 1 M), but was strongly inhibited by CuSO4 (0.01 and 0.1 mM) and less potently inhibited by other divalent salts including MgCl2, CaCl2, ZnCl2, ZnSO4 and FeSO4. The optimal pH was 5.5 and the ribonuclease was stable up to 60 degrees C for 1 h. The ribonuclease inhibited mycelial growth in the fungi Fusarium oxysporum and Mycosphaerella arachidicola with an IC50 value of 95 and 72 microM, respectively. Out of the 12 species of bacteria tested, only Pseudomonas aeruginosa and Staphylococcus aureus were inhibited in growth by the ribonuclease. Viability of the tumor cells HepG2 (hepatoma) and L1210 (leukemia) was reduced with an IC50 of 0.22 and 0.1 microM, respectively in the presence of the ribonuclease. The ribonuclease inhibited translation in a cell-free rabbit reticulocyte lysate system with an IC50 of 158 nM and 3H-methyl-thymidine uptake by murine splenocytes with an IC50 of 65 nM.  相似文献   
83.
84.
Dienelactone hydrolase from Pseudomonas sp. strain B13.   总被引:6,自引:5,他引:1       下载免费PDF全文
Dienelactone hydrolase (EC 3.1.1.45) catalyzes the conversion of cis- or trans-4-carboxymethylenebut-2-en-4-olide (dienelactone) to maleylacetate. An approximately 24-fold purification from extracts of 3-chlorobenzoate-grown Pseudomonas sp. strain B13 yielded a homogeneous preparation of the enzyme. The purified enzyme crystallized readily and proved to be a monomer with a molecular weight of about 30,000. Each dienelactone hydrolase molecule contains two cysteinyl side chains. One of these was readily titrated by stoichiometric amounts of p-chloromercuribenzoate, resulting in inactivation of the enzyme; the inactivation could be reversed by the addition of dithiothreitol. The other cysteinyl side chain appeared to be protected in the native protein against chemical reaction with p-chloromercuribenzoate. The properties of sulfhydryl side chains in dienelactone hydrolase resembled those that have been characterized for bacterial 4-carboxymethylbut-3-en-4-olide (enol-lactone) hydrolases (EC 3.1.1.24), which also are monomers with molecular weights of about 30,000. The amino acid composition of the dienelactone hydrolase resembled the amino acid composition of enol-lactone hydrolase from Pseudomonas putida, and alignment of the NH2-terminal amino acid sequence of the dienelactone hydrolase with the corresponding sequence of an Acinetobacter calcoaceticus enol-lactone hydrolase revealed sequence identity at 8 of the 28 positions. These observations foster the hypothesis that the lactone hydrolases share a common ancestor. The lactone hydrolases differed in one significant property: the kcat of dienelactone hydrolase was 1,800 min-1, an order of magnitude below the kcat observed with enol-lactone hydrolases. The relatively low catalytic activity of dienelactone hydrolase may demand its production at the high levels observed for induced cultures of Pseudomonas sp. strain B13.  相似文献   
85.
Marine organisms including bacteria, fungi, algae, sponges, echinoderms, mollusks, and cephalochordates produce a variety of products with antifungal activity including bacterial chitinases, lipopeptides, and lactones; fungal (-)-sclerotiorin and peptaibols, purpurides B and C, berkedrimane B and purpuride; algal gambieric acids A and B, phlorotannins; 3,5-dibromo-2-(3,5-dibromo-2-methoxyphenoxy)phenol, spongistatin 1, eurysterols A and B, nortetillapyrone, bromotyrosine alkaloids, bis-indole alkaloid, ageloxime B and (-)-ageloxime D, haliscosamine, hamigeran G, hippolachnin A from sponges; echinoderm triterpene glycosides and alkene sulfates; molluscan kahalalide F and a 1485-Da peptide with a sequence SRSELIVHQR; and cepalochordate chitotriosidase and a 5026.9-Da antifungal peptide. The antiviral compounds from marine organisms include bacterial polysaccharide and furan-2-yl acetate; fungal macrolide, purpurester A, purpurquinone B, isoindolone derivatives, alterporriol Q, tetrahydroaltersolanol C and asperterrestide A, algal diterpenes, xylogalactofucan, alginic acid, glycolipid sulfoquinovosyldiacylglycerol, sulfated polysaccharide p-KG03, meroditerpenoids, methyl ester derivative of vatomaric acid, lectins, polysaccharides, tannins, cnidarian zoanthoxanthin alkaloids, norditerpenoid and capilloquinol; crustacean antilipopolysaccharide factors, molluscan hemocyanin; echinoderm triterpenoid glycosides; tunicate didemnin B, tamandarins A and B and; tilapia hepcidin 1-5 (TH 1-5), seabream SauMx1, SauMx2, and SauMx3, and orange-spotted grouper β-defensin. Although the mechanisms of antifungal and antiviral activities of only some of the aforementioned compounds have been elucidated, the possibility to use those known to have distinctly different mechanisms, good bioavailability, and minimal toxicity in combination therapy remains to be investigated. It is also worthwhile to test the marine antimicrobials for possible synergism with existing drugs. The prospects of employing them in clinical practice are promising in view of the wealth of these compounds from marine organisms. The compounds may also be used in agriculture and the food industry.  相似文献   
86.
Current viral gene delivery vectors for gene therapy are inefficient due to short-lived transgene expression attributed to the cytosine-phosphate-guanine (CpG) motifs in the transgene. Here we assessed the effects of CpG motif reduction in lentiviral (LV) gene delivery context on the level and duration of reporter gene expression in Chinese Hamster Ovary (CHO) cells, Human Immortalized Myelogenous Leukemia (K562) cells and hematopoietic stem cells (HSCs). The cells were transduced with LV carrying Zero-CpG green fluorescent protein (ZGFP) reporter gene, LV/CMV/ZGFP. The GFP expression was compared to its non CpG-depleted GFP reporter gene LV (LV/CMV/GFP) counterpart. The LV/CMV/ZGFP exhibited prolonged transgene expression in CHO cells and HSCs up to 10 days and 14 days, in the respective cells. This effect was not seen in the transduced K562 cells, which may be due to the DNA hypomethylation status of the cancer cell line. Transgene copy number analysis verified that the GFP expression was not from pseudo-transduction and the transgene remained in the genome of the cells throughout the period of the study. The modest positive effects from the LV/CMV/ZGFP suggest that the reduction of CpG in the LV construct was not substantial to generate higher and more prolonged transgene expression.  相似文献   
87.
Hepatitis B virus (HBV) infection is a global public health problem that plays a crucial role in the pathogenesis of chronic hepatitis, cirrhosis, and hepatocellular carcinoma. However, the pathogenesis of HBV infection and the mechanisms of host-virus interactions are still elusive. In this study, two-dimensional gel electrophoresis and mass spectrometry-based comparative proteomics were applied to analyze the host response to HBV using an inducible HBV-producing cell line, HepAD38. Twenty-three proteins were identified as differentially expressed with glucose-regulated protein 78 (GRP78) as one of the most significantly up-regulated proteins induced by HBV replication. This induction was further confirmed in both HepAD38 and HepG2 cells transfected with HBV-producing plasmids by real time RT-PCR and Western blotting as well as in HBV-infected human liver biopsies by immunohistochemistry. Knockdown of GRP78 expression by RNA interference resulted in a significant increase of both intracellular and extracellular HBV virions in the transient HBV-producing HepG2 cells concomitant with enhanced levels of hepatitis B surface antigen and e antigen in the culture medium. Conversely overexpression of GRP78 in HepG2 cells led to HBV suppression concomitant with induction of the positive regulatory circuit of GRP78 and interferon-β1 (IFN-β1). In this connection, the IFN-β1-mediated 2′,5′-oligoadenylate synthetase and RNase L signaling pathway was noted to be activated in GRP78-overexpressing HepG2 cells. Moreover GRP78 was significantly down-regulated in the livers of chronic hepatitis B patients after effective anti-HBV treatment (p = 0.019) as compared with their counterpart pretreatment liver biopsies. In conclusion, the present study demonstrates for the first time that GRP78 functions as an endogenous anti-HBV factor via the IFN-β1-2′,5′-oligoadenylate synthetase-RNase L pathway in hepatocytes. Induction of hepatic GRP78 may provide a novel therapeutic approach in treating HBV infection.Hepatitis B virus infection is a global public health problem. An estimated 2 billion (one-third of the world''s population) people are infected with HBV1 worldwide, and more than 400 million are chronic hepatitis B (CHB) carriers (1). Epidemiological studies have shown that HBV infection is one of the major risk factors for chronic hepatitis, liver fibrosis, and hepatocellular carcinoma (HCC). Every year, over 1 million people die of HBV-related liver diseases, 30–50% of which are attributed to HCC (2). In China, more than 130 million (10% of the national population) people are suffering from CHB (3), and HCC has been ranked as the second major cause of cancer-related death since 1990 (4). However, the limited efficacy of antiviral therapies, high rates of post-treatment HBV relapse, and the emergence of drug-resistant viral mutants have greatly hindered the effective management of CHB infection. Therefore, it is of prime importance to understand the mechanisms of HBV-host interactions during malignant transformation in CHB infection to identify novel therapeutic anti-HBV targets.Because human HBV is incapable of infecting hepatocytes in vitro efficiently and the availability of reliable in vitro culture systems that favor HBV replication is limited, the pathogenetic studies of HBV and the development of anti-HBV drugs have long been hampered. HepAD38 and HepG2.2.15, both of which are derived from HepG2 cells and integrated with a greater than 1-unit-length HBV genome, have been widely accepted and are well established cell lines for the study of the HBV life cycle and screening potential HBV inhibitors since the late 1990s (5, 6). Recently comparative proteomics analysis of the HBV-expressing HepG2.2.15 cells and the parental HepG2 cells has been performed in two independent laboratories to characterize the altered proteome profile induced by HBV (7, 8). However, the different genetic backgrounds of HepG2.2.15 and HepG2 may lead to an inaccurate evaluation of the impact of HBV replication on host genes. When compared with HepG2.2.15 cells, which produce HBV particles in a continuous manner, HepAD38 cells produce higher levels of HBV DNA in a controllable and inducible way (5). HBV production in HepAD38 is under the strict control of a tetracycline-responsive promoter; therefore, a direct comparison of cellular characteristics with or without HBV replication in HepAD38 is easily achieved. To date, changes in the proteome profile of HepAD38 induced by HBV replication have not been reported. In this study, we performed comparative proteomics to globally analyze the host response to HBV by using an inducible HBV-producing cell line, HepAD38. The combination of two-dimensional gel electrophoresis (2-DE) and MALDI-TOF MS revealed that 23 cellular proteins were differentially expressed when HBV replicated. Among them, GRP78, which was one of the most highly up-regulated proteins, was further selected for functional assessment.  相似文献   
88.
Predators are often more sensitive to habitat size than their prey and frequently occur in only the largest habitats. Four explanations have been proposed for this pattern: (a) Small habitats do not have enough energy to support higher trophic levels; (b) small habitats are less likely to contain particular prey required by specialist predators; (c) small habitats are risky for predators with slow life histories or large body sizes; and (d) small habitats are numerically unlikely to be colonized by regionally rare species, such as predators. We critically examine these four hypotheses in relation to the predatory damselfly larva, Mecistogaster modesta Selys. (Pseudostigmatidae), which occurs almost exclusively in bromeliads > 100ml in capacity. We synthesize multiple years of survey data and three manipulative experiments from the Área de Conservación Guanacaste, Costa Rica, to conclude that damselflies do not occur in small bromeliads due to their higher risk of desiccation—not because of energetic limitation, trophic specialization, risk of terrestrial predation, or pure numerical effects. These results suggest that recent and predicted declines in precipitation in northwestern Costa Rica may further restrict bromeliad occupancy by damselflies, with cascading consequences for the rest of the aquatic food web.  相似文献   
89.
Extracellular bacterial symbionts communicate biochemically with their hosts to establish niches that foster the partnership. Using quantitative ion microprobe isotopic imaging (nanoscale secondary ion mass spectrometry [NanoSIMS]), we surveyed localization of 15N‐labelled molecules produced by the bacterium Vibrio fischeri within the cells of the symbiotic organ of its host, the Hawaiian bobtail squid, and compared that with either labelled non‐specific species or amino acids. In all cases, two areas of the organ's epithelia were significantly more 15N enriched: (a) surface ciliated cells, where environmental symbionts are recruited, and (b) the organ's crypts, where the symbiont population resides in the host. Label enrichment in all cases was strongest inside host cell nuclei, preferentially in the euchromatin regions and the nucleoli. This permissiveness demonstrated that uptake of biomolecules is a general mechanism of the epithelia, but the specific responses to V. fischeri cells recruited to the organ's surface are due to some property exclusive to this species. Similarly, in the organ's deeper crypts, the host responds to common bacterial products that only the specific symbiont can present in that location. The application of NanoSIMS allows the discovery of such distinct modes of downstream signalling dependent on location within the host and provides a unique opportunity to study the microbiogeographical patterns of symbiotic dialogue.  相似文献   
90.
DNA methylation is linked to homocysteine metabolism through the generation of S-adenosylmethionine (AdoMet) and S-Adenosylhomocysteine (AdoHcy). The ratio of AdoMet/AdoHcy is often considered an indicator of tissue methylation capacity. The goal of this study is to determine the relationship of tissue AdoMet and AdoHcy concentrations to allele-specific methylation and expression of genomically imprinted H19/Igf2. Expression of H19/Igf2 is regulated by a differentially methylated domain (DMD), with H19 paternally imprinted and Igf2 maternally imprinted. F1 hybrid C57BL/6J x Castaneous/EiJ (Cast) mice with (+/−), and without (+/+), heterozygous disruption of cystathionine-β-synthase (Cbs) were fed a control diet or a diet (called HH) to induce hyperhomocysteinemia and changes in tissue AdoMet and AdoHcy. F1 Cast x Cbs+/− mice fed the HH diet had significantly higher plasma total homocysteine concentrations, higher liver AdoHcy, and lower AdoMet/AdoHcy ratios and this was accompanied by lower liver maternal H19 DMD allele methylation, lower liver Igf2 mRNA levels, and loss of Igf2 maternal imprinting. In contrast, we found no significant differences in AdoMet and AdoHcy in brain between the diet groups but F1 Cast x Cbs+/− mice fed the HH diet had higher maternal H19 DMD methylation and lower H19 mRNA levels in brain. A significant negative relationship between AdoHcy and maternal H19 DMD allele methylation was found in liver but not in brain. These findings suggest the relationship of AdoMet and AdoHcy to gene-specific DNA methylation is tissue-specific and that changes in DNA methylation can occur without changes in AdoMet and AdoHcy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号