首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181篇
  免费   21篇
  202篇
  2023年   1篇
  2022年   3篇
  2020年   3篇
  2019年   2篇
  2018年   5篇
  2016年   4篇
  2015年   3篇
  2014年   6篇
  2013年   12篇
  2012年   11篇
  2011年   8篇
  2010年   9篇
  2009年   14篇
  2008年   10篇
  2007年   10篇
  2006年   8篇
  2005年   10篇
  2004年   9篇
  2003年   10篇
  2002年   6篇
  2001年   6篇
  2000年   4篇
  1999年   6篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   7篇
  1986年   3篇
  1985年   6篇
  1984年   3篇
  1983年   1篇
  1974年   2篇
  1969年   1篇
排序方式: 共有202条查询结果,搜索用时 9 毫秒
161.
P-glycoprotein (Pgp), an efflux pump, was confirmed the first time to regulate the expressions of miR/gene in cells. Pgp is known to be associated with multidrug resistance. RHepG2 cells, the multidrug resistant subline of human hepatocellular carcinoma HepG2 cells, expressed higher levels of Pgp as well as miR-16, and lower level of Bcl-2 than the parental cells. In addition, RHepG2 cells were more radiation sensitive and showed more pronounced radiation-induced apoptotic cell death than the parental cells. Mechanistic analysis revealed that transfection with mdr1 specific antisense oligos suppressed radiation-induced apoptosis in HepG2 cells. On the other hand, ectopic mdr1 expression enhanced radiation-induced apoptosis in HepG2 cells, SK-HEP-1 cells, MiHa cells, and furthermore, induced miR-16 and suppressed its target gene Bcl-2 in HepG2 cells. Moreover, the enhancement effects of Pgp and miR-16 on radiation-induced apoptosis were counteracted by overexpression of Bcl-2. The Pgp effect on miR-16/Bcl-2 was suppressed by Pgp blocker verapamil indicating the importance of the efflux of Pgp substrates. The present study is the first to reveal the role of Pgp in regulation of miRNA/gene expressions. The findings may provide new perspective in understanding the biological function of Pgp.  相似文献   
162.
Duck egg-drop syndrome caused by BYD virus, a new Tembusu-related flavivirus   总被引:31,自引:0,他引:31  
Su J  Li S  Hu X  Yu X  Wang Y  Liu P  Lu X  Zhang G  Hu X  Liu D  Li X  Su W  Lu H  Mok NS  Wang P  Wang M  Tian K  Gao GF 《PloS one》2011,6(3):e18106
Since April 2010, a severe outbreak of duck viral infection, with egg drop, feed uptake decline and ovary-oviduct disease, has spread around the major duck-producing regions in China. A new virus, named BYD virus, was isolated in different areas, and a similar disease was reproduced in healthy egg-producing ducks, infecting with the isolated virus. The virus was re-isolated from the affected ducks and replicated well in primary duck embryo fibroblasts and Vero cells, causing the cytopathic effect. The virus was identified as an enveloped positive-stranded RNA virus with a size of approximately 55 nm in diameter. Genomic sequencing of the isolated virus revealed that it is closely related to Tembusu virus (a mosquito-borne Ntaya group flavivirus), with 87-91% nucleotide identity of the partial E (envelope) proteins to that of Tembusu virus and 72% of the entire genome coding sequence with Bagaza virus, the most closely related flavivirus with an entirely sequenced genome. Collectively our systematic studies fulfill Koch's postulates, and therefore, the causative agent of the duck egg drop syndrome occurring in China is a new flavivirus. Flavivirus is an emerging and re-emerging zoonotic pathogen and BYD virus that causes severe egg-drop, could be disastrous for the duck industry. More importantly its public health concerns should also be evaluated, and its epidemiology should be closely watched due to the zoonotic nature of flaviviruses.  相似文献   
163.
Hereditary myopathy with lactic acidosis (HML) (OMIM #255125) presents in childhood with exercise intolerance and muscle pain on trivial exercise, lactic acidosis, dyspnoea, palpitations, and rhabdomyolysis which can be fatal. The disease is recessively inherited and caused by a deep intronic, single base transition in the iron-sulfur cluster scaffold, ISCU gene that causes retention of a pseudoexon and introduction of a premature termination codon. IscU protein deficiency causes secondary defects in several iron-sulfur dependant proteins, including enzymes involved in aerobic energy metabolism. We have shown in a previous study that the splice abnormality affects skeletal muscle more than other tissues, leading to the purely muscular phenotype.Antisense oligonucleotides (AOs) have been able to redirect mRNA splicing in a number of disease models, and show promise in clinical studies. We designed 2′O-methyl phosphorothioate AOs targeting either splice site of the detrimental HML pseudoexon. The acceptor site AO effectively redirected splicing towards the normal state in cultured muscle fibroblasts, whilst the donor site AO promoted pseudoexon inclusion in both patient and control cells. Our results show that AO therapy seems feasible in HML, but care must be taken to avoid adverse splicing effects.  相似文献   
164.
Due to a growing world population and increasing welfare, energy demand worldwide is increasing. To meet the increasing energy demand in a sustainable way, new technologies are needed. The Plant-Microbial Fuel Cell (P-MFC) is a technology that could produce sustainable bio-electricity and help meeting the increasing energy demand. Power output of the P-MFC, however, needs to be increased to make it attractive as a renewable and sustainable energy source. To increase power output of the P-MFC internal resistances need to be reduced. With a flat-plate P-MFC design we tried to minimize internal resistances compared to the previously used tubular P-MFC design. With the flat-plate design current and power density per geometric planting area were increased (from 0.15 A/m2 to 1.6 A/m2 and from 0.22 W/m2 to and 0.44 W/m2)as were current and power output per volume (from 7.5 A/m3 to 122 A/m3 and from 1.3 W/m3 to 5.8 W/m3). Internal resistances times volume were decreased, even though internal resistances times membrane surface area were not. Since the membrane in the flat-plate design is placed vertically, membrane surface area per geometric planting area is increased, which allows for lower internal resistances times volume while not decreasing internal resistances times membrane surface area. Anode was split into three different sections on different depths of the system, allowing to calculate internal resistances on different depths. Most electricity was produced where internal resistances were lowest and where most roots were present; in the top section of the system. By measuring electricity production on different depths in the system, electricity production could be linked to root growth. This link offers opportunities for material-reduction in new designs. Concurrent reduction in material use and increase in power output brings the P-MFC a step closer to usable energy density and economic feasibility.  相似文献   
165.
Both multiple sequence alignment and phylogenetic analysis are problematic in the "twilight zone" of sequence similarity (≤ 25% amino acid identity). Herein we explore the accuracy of phylogenetic inference at extreme sequence divergence using a variety of simulated data sets. We evaluate four leading multiple sequence alignment (MSA) methods (MAFFT, T-COFFEE, CLUSTAL, and MUSCLE) and six commonly used programs of tree estimation (Distance-based: Neighbor-Joining; Character-based: PhyML, RAxML, GARLI, Maximum Parsimony, and Bayesian) against a novel MSA-independent method (PHYRN) described here. Strikingly, at "midnight zone" genetic distances (~7% pairwise identity and 4.0 gaps per position), PHYRN returns high-resolution phylogenies that outperform traditional approaches. We reason this is due to PHRYN's capability to amplify informative positions, even at the most extreme levels of sequence divergence. We also assess the applicability of the PHYRN algorithm for inferring deep evolutionary relationships in the divergent DANGER protein superfamily, for which PHYRN infers a more robust tree compared to MSA-based approaches. Taken together, these results demonstrate that PHYRN represents a powerful mechanism for mapping uncharted frontiers in highly divergent protein sequence data sets.  相似文献   
166.

Objective

To examine the long-term effect of CPAP on carotid artery intima-media thickness (IMT) in patients with Obstructive sleep apnea syndrome(OSAS).

Methods

A prospective observational study over 12 months at a teaching hospital on 50 patients newly diagnosed with OSAS who received CPAP or conservative treatment (CT). Carotid IMT was assessed with B-mode Doppler ultrasound from both carotid arteries using images of the far wall of the distal 10 mm of the common carotid arteries at baseline, 6 months and 12 months.

Measurements and results [mean (SE)]

Altogether 28 and 22 patients received CPAP and CT respectively without significant differences in age 48.8(1.8) vs 50.5(2.0)yrs, BMI 28.2(0.7) vs 28.0(1.2)kg/m2, ESS 13.1(0.7) vs 12.7(0.6), AHI 38(3) vs 39(3)/hr, arousal index 29(2) vs 29(2)/hr, minimum SaO2 75(2) vs 77(2)% and existing co-morbidities. CPAP usage was 4.6(0.3) and 4.7(0.4)hrs/night over 6 months and 1 year respectively. Carotid artery IMT at baseline, 6 months, and 12 months were 758(30), 721(20), and 705(20)micron for the CPAP group versus 760(30), 770(30), and 778(30)micron respectively for the CT group, p = 0.002.Among those free of cardiovascular disease(n = 24), the carotid artery IMT at baseline, 6 months and 12 months were 722(40), 691(40), and 659(30)micron for the CPAP group (n = 12) with usage 4.5(0.7) and 4.7(0.7) hrs/night over 6 months and 12 months whereas the IMT data for the CT group(n = 12) were 660(20), 685(10), and 690(20)micron respectively, p = 0.006.

Conclusions

Reduction of carotid artery IMT occurred mostly in the first 6 months and was sustained at 12 months in patients with reasonable CPAP compliance.  相似文献   
167.
A simple and rapid procedure for the purification of the native form of chicken gizzard myosin light-chain kinase (Mr 136000) is described which eliminates problems of proteolysis previously encountered. During this procedure, a calmodulin-binding protein of Mr 141000, which previously co-purified with the myosin light-chain kinase, is removed and shown to be a distinct protein on the basis of lack of kinase activity, different chymotryptic peptide maps, lack of cross-reactivity with a monoclonal antibody to turkey gizzard myosin light-chain kinase, and lack of phosphorylation by the purified catalytic subunit of cyclic AMP-dependent protein kinase. This Mr-141000 calmodulin-binding protein is identified as caldesmon on the basis of Ca2+-dependent interaction with calmodulin, subunit Mr, Ca2+-independent interaction with skeletal-muscle F-actin, Ca2+-dependent competition between calmodulin and F-actin for caldesmon, and tissue content.  相似文献   
168.
Recent research has shown that the microbiota affects the biology of associated host epithelial tissues, including their circadian rhythms, although few data are available on how such influences shape the microarchitecture of the brush border. The squid‐vibrio system exhibits two modifications of the brush border that supports the symbionts: effacement and repolarization. Together these occur on a daily rhythm in adult animals, at the dawn expulsion of symbionts into the environment, and symbiont colonization of the juvenile host induces an increase in microvillar density. Here we sought to define how these processes are related and the roles of both symbiont colonization and environmental cues. Ultrastructural analyses showed that the juvenile‐organ brush borders also efface concomitantly with daily dawn‐cued expulsion of symbionts. Manipulation of the environmental light cue and juvenile symbiotic state demonstrated that this behaviour requires the light cue, but not colonization. In contrast, symbionts were required for the observed increase in microvillar density that accompanies post dawn brush‐border repolarization; this increase was induced solely by host exposure to phosphorylated lipid A of symbiont cells. These data demonstrate that a partnering of environmental and symbiont cues shapes the brush border and that microbe‐associated molecular patterns play a role in the regulation of brush‐border microarchitecture.  相似文献   
169.
Membranous nephropathy (MN), a common cause of idiopathic nephrotic syndrome in adults, remains a potentially devastating problem worldwide. At present, there is no reliable noninvasive method for predicting and/or monitoring this glomerular disease, and its pathophysiology remains poorly understood. In the present study, the urinary proteome profile of rats after 10 days of an induction of passive Heymann nephritis (PHN), which resembles human MN, was compared to that of the baseline (control) urine prior to the induction of PHN by anti-Fx1A injection. Each pool of PHN and control urine samples (n = 10 each) was labeled with different fluorescent dyes (Cy3 or Cy5), and equal amounts of the labeled proteins of both pools were resolved in the same 2D gel, together with an internal standard labeled with Cy2. Two-dimensional difference gel electrophoresis revealed a number of protein spots whose expression levels were altered during PHN. Eighteen protein spots with >1.5-fold changes and p < 0.05 were selected for subsequent identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. They were successfully identified as serum albumin precursor, alpha-1-antitrypsin, preprohaptoglobin, liver-regeneration-related protein, and transthyretin (which increased during PHN) and E-cadherin, MPP7, tropomyosin beta, kallikrein, and alpha-2u globulin (which decreased in the PHN urine). Among these proteins, the increase in urinary preprohaptoglobin has particularly drawn our attention because of its byproduct, haptoglobin (Hp), which is involved in the protection of tissue damage from hemoglobin-induced oxidative stress. Western blotting and enzyme-linked immunosorbent assay clearly showed a markedly increased level of Hp in the urine, but not in the serum, of the PHN animals. Our findings may lead to a significant advance in the attempt to define a new therapeutic target and/or novel biomarker for human MN.  相似文献   
170.
Chen Y  Lin MC  Wang H  Chan CY  Jiang L  Ngai SM  Yu J  He ML  Shaw PC  Yew DT  Sung JJ  Kung HF 《Proteomics》2007,7(17):3097-3104
Enhancer of zeste homolog 2 (EZH2) is suggested to be a potential therapeutic target and a diagnostic marker for cancer. Our previous study also showed the critical role of EZH2 in hepatocellular carcinoma (HCC) tumorigenesis. The present study is aimed at revealing the comprehensive downstream pathways of EZH2 by functional proteomic profiling. Lentivirus mediated RNA interference (RNAi) was employed to knockdown EZH2 in HCC cells. The 2-DE was employed to compare the expression profile difference between parental and EZH2-knockdown HCC cells. In total, 28 spots were differentially expressed during EZH2 inhibition. Among all, 18 proteins were identified by PMF with MALDI-TOF MS. Western blotting further validated upregulation of 60S acidic ribosomal protein P0 (L10E), and downregulation of two proteins with EZH2 inhibition: stathmin1 and probable protein disulfide isomerase (PDI) ER-60 precursor (ERp57). Moreover, L10E was downregulated with overexpression of EZH2 in hepatocytes, and L10E reversed the effect of EZH2 on cell proliferation, suggesting it a downstream target of EZH2. The comprehensive and comparative analyses of proteins associated with EZH2 could further our understanding on the downstream signal cascade of EZH2 leading to tumorigenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号