首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5171篇
  免费   524篇
  国内免费   11篇
  2022年   58篇
  2021年   120篇
  2020年   46篇
  2019年   74篇
  2018年   98篇
  2017年   87篇
  2016年   138篇
  2015年   267篇
  2014年   299篇
  2013年   319篇
  2012年   381篇
  2011年   401篇
  2010年   240篇
  2009年   182篇
  2008年   251篇
  2007年   269篇
  2006年   250篇
  2005年   246篇
  2004年   223篇
  2003年   205篇
  2002年   184篇
  2001年   136篇
  2000年   145篇
  1999年   95篇
  1998年   47篇
  1997年   40篇
  1996年   31篇
  1995年   23篇
  1994年   32篇
  1993年   30篇
  1992年   62篇
  1991年   69篇
  1990年   39篇
  1989年   69篇
  1988年   36篇
  1987年   49篇
  1986年   41篇
  1985年   42篇
  1984年   36篇
  1983年   32篇
  1982年   30篇
  1981年   26篇
  1980年   20篇
  1979年   27篇
  1978年   32篇
  1977年   15篇
  1976年   24篇
  1974年   17篇
  1973年   20篇
  1971年   16篇
排序方式: 共有5706条查询结果,搜索用时 15 毫秒
991.

Background

Schizophrenia is a major disorder with complex genetic mechanisms. Earlier, population genetic studies revealed the occurrence of strong positive selection in the GABRB2 gene encoding the β2 subunit of GABAA receptors, within a segment of 3,551 bp harboring twenty-nine single nucleotide polymorphisms (SNPs) and containing schizophrenia-associated SNPs and haplotypes.

Methodology/Principal Findings

In the present study, the possible occurrence of recombination in this ‘S1–S29’ segment was assessed. The occurrence of hotspot recombination was indicated by high resolution recombination rate estimation, haplotype diversity, abundance of rare haplotypes, recurrent mutations and torsos in haplotype networks, and experimental haplotyping of somatic and sperm DNA. The sub-segment distribution of relative recombination strength, measured by the ratio of haplotype diversity (Hd) over mutation rate (θ), was indicative of a human specific Alu-Yi6 insertion serving as a central recombining sequence facilitating homologous recombination. Local anomalous DNA conformation attributable to the Alu-Yi6 element, as suggested by enhanced DNase I sensitivity and obstruction to DNA sequencing, could be a contributing factor of the increased sequence diversity. Linkage disequilibrium (LD) analysis yielded prominent low LD points that supported ongoing recombination. LD contrast revealed significant dissimilarity between control and schizophrenic cohorts. Among the large array of inferred haplotypes, H26 and H73 were identified to be protective, and H19 and H81 risk-conferring, toward the development of schizophrenia.

Conclusions/Significance

The co-occurrence of hotspot recombination and positive selection in the S1–S29 segment of GABRB2 has provided a plausible contribution to the molecular genetics mechanisms for schizophrenia. The present findings therefore suggest that genome regions characterized by the co-occurrence of positive selection and hotspot recombination, two interacting factors both affecting genetic diversity, merit close scrutiny with respect to the etiology of common complex disorders.  相似文献   
992.
After two decades of quiescence, epidemic resurgence of Chikungunya fever (CHIKF) was reported in Africa, several islands in the Indian Ocean, South-East Asia and the Pacific causing unprecedented morbidity with some cases of fatality. Early phylogenetic analyses based on partial sequences of Chikungunya virus (CHIKV) have led to speculation that the virus behind recent epidemics may result in greater pathogenicity. To understand the reasons for these new epidemics, we first performed extensive analyses of existing CHIKV sequences from its introduction in 1952 to 2009. Our results revealed the existence of a continuous genotypic lineage, suggesting selective pressure is active in CHIKV evolution. We further showed that CHIKV is undergoing mild positive selection, and that site-specific mutations may be driven by cell-mediated immune pressure, with occasional changes that resulted in the loss of human leukocyte antigen (HLA) class I-restricting elements. These findings provide a basis to understand Chikungunya virus evolution and reveal the power of post-genomic analyses to understand CHIKV and other viral epidemiology. Such an approach is useful for studying the impact of host immunity on pathogen evolution, and may help identify appropriate antigens suitable for subunit vaccine formulations.  相似文献   
993.

Background

Mapping the expression changes during breast cancer development should facilitate basic and translational research that will eventually improve our understanding and clinical management of cancer. However, most studies in this area are challenged by genetic and environmental heterogeneities associated with cancer.

Methodology/Principal Findings

We conducted proteomics of the MCF10AT breast cancer model, which comprises of 4 isogenic xenograft-derived human cell lines that mimic different stages of breast cancer progression, using iTRAQ-based tandem mass spectrometry. Of more than 1200 proteins detected, 98 proteins representing at least 20 molecular function groups including kinases, proteases, adhesion, calcium binding and cytoskeletal proteins were found to display significant expression changes across the MCF10AT model. The number of proteins that showed different expression levels increased as disease progressed from AT1k pre-neoplastic cells to low grade CA1h cancer cells and high grade cancer cells. Bioinformatics revealed that MCF10AT model of breast cancer progression is associated with a major re-programming in metabolism, one of the first identified biochemical hallmarks of tumor cells (the “Warburg effect”). Aberrant expression of 3 novel breast cancer-associated proteins namely AK1, ATOX1 and HIST1H2BM were subsequently validated via immunoblotting of the MCF10AT model and immunohistochemistry of progressive clinical breast cancer lesions.

Conclusion/Significance

The information generated by this study should serve as a useful reference for future basic and translational cancer research. Dysregulation of ATOX1, AK1 and HIST1HB2M could be detected as early as the pre-neoplastic stage. The findings have implications on early detection and stratification of patients for adjuvant therapy.  相似文献   
994.
DNA methylation and chromatin modification.   总被引:37,自引:0,他引:37  
  相似文献   
995.
Microbial fuel cells (MFCs) degrade organic contaminants in wastewater while simultaneously producing electricity, but must be stacked to yield adequate voltage and current. This study examined the evolution of the chemical oxygen demand (COD) removal rate and efficiency in two identical individual MFCs (i-MFCs) in series- and parallel-connected stacks (sc- and pc-MFCs, respectively) under batch and continuous operation. The stack voltage and current increased in the respective series and parallel connections of the two i-MFCs (MFC unit 1 and MFC unit 2). Voltage reversal was observed in the sc- MFC below an external load of 100 Ω. Regardless of occurrence of the voltage reversal, organic reduction between i-MFCs and sc-MFCs showed no significant difference (gap of < 9% and < 6% in COD removal rate and efficiency, respectively); additionally, organic removals between the two individual MFCs in series indicated differences less than 9% of COD removal rate and 5% of COD removal efficiency in batch mode. Continuous operation also yielded similar organic removals as the MFCs in individual and series connection (voltage reversal occurred) mode, even over 8 days operation. Parallel connection yielded identical organic removals and currents in the two individual MFCs of the pc-MFC, even though the two separate i-MFCs showed different organic removal rates and current productions. This study provides the guide for the application of stacked MFCs for power source and efficient organic pollutant removal in wastewater treatment process.  相似文献   
996.
997.
998.
999.
A novel protease with a molecular mass of 15 kDa was purified from fresh fruiting bodies of the wild mushroom Amanita farinosa. The purification protocol entailed anion exchange chromatography on DEAE-cellulose, affinity chromatography on Affi-gel blue gel, cation exchange chromatography on SP-Sepharose, and gel filtration by fast protein liquid chromatography on Superdex 75. The protease was unadsorbed on DEAE-cellulose but adsorbed on Affi-gel blue gel and SP-Sepharose. It demonstrated a single 15-kDa band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS/PAGE) and a 15-kDa peak in gel filtration. The optimal pH and optimal temperature of the protease were pH 8.0 and 65 °C, respectively. Proliferation of human hepatoma HepG2 cells was inhibited by the protease with an IC(50) of 25 μM. The protease did not have antifungal or ribonuclease activity.  相似文献   
1000.
Mesenchymal stem cells (MSCs) undergo cellular senescence during in vitro expansion culture, which accompanies the loss of migration and homing abilities. In this study, we analyzed expression levels of several surface markers of human MSCs at different passages of expansion culture. It has been shown that expression of vascular cell adhesion molecule-1 (VCAM-1) was most markedly decreased among the tested markers in the senescent MSCs. Interestingly the reduced VCAM-1 expression could be restored by applying hyaluronan, a major glycosaminoglycan ligand of CD44, to the culture. It was found that the hyaluronan level in extracellular and pericellular matrices was greatly reduced in the senescent MSCs, mainly due to the decreased expression of hyaluronan synthases, suggesting a correlation between the reduced VCAM-1 expression and hyaluronan synthesis. In fact, when hyaluronan synthases were knock-downed by siRNA transfection, the VCAM-1 expression was also reduced. Our results indicate that VCAM-1 expression in the senescent MSCs was down-regulated because of the reduced synthesis of hyaluronan. Thus, we suggest that hyaluronan supplementation in expansion culture of MSCs would compensate adverse effects induced by its decreased synthesis and subsequently enhance cell adhesion and migration abilities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号