首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5164篇
  免费   523篇
  国内免费   11篇
  2022年   51篇
  2021年   119篇
  2020年   46篇
  2019年   74篇
  2018年   98篇
  2017年   87篇
  2016年   138篇
  2015年   267篇
  2014年   299篇
  2013年   319篇
  2012年   381篇
  2011年   401篇
  2010年   240篇
  2009年   182篇
  2008年   251篇
  2007年   269篇
  2006年   250篇
  2005年   246篇
  2004年   223篇
  2003年   205篇
  2002年   184篇
  2001年   136篇
  2000年   145篇
  1999年   95篇
  1998年   47篇
  1997年   40篇
  1996年   31篇
  1995年   23篇
  1994年   32篇
  1993年   30篇
  1992年   62篇
  1991年   69篇
  1990年   39篇
  1989年   69篇
  1988年   36篇
  1987年   49篇
  1986年   41篇
  1985年   42篇
  1984年   36篇
  1983年   32篇
  1982年   30篇
  1981年   26篇
  1980年   20篇
  1979年   27篇
  1978年   32篇
  1977年   15篇
  1976年   24篇
  1974年   17篇
  1973年   20篇
  1971年   16篇
排序方式: 共有5698条查询结果,搜索用时 46 毫秒
61.
An optimized, defined minimal medium was developed to support balanced growth of Escherichia coli X90 harboring a recombinant plasmid. Foreign protein expression was repressed in these studies. A pulse injection technique was used to identify the growth responses to nutrients in a chemostat. Once the nutrients essential for growth had been identified, the yield coefficients for individual medium components. These yield coefficients were used to develop an optimized, glucose-limited defined minimal medium that supports balanced cell growth in chemostat culture. The biomass and substrate concentrations follow the Monod chemostat model. The maximum specific growth rate determined in a washout experiment is 0.87 h(-1) for this strain in the optimized medium. the glucose yield factor is 0.42 g DCW/g glucose and the maintenance coefficient is zero in the glucose-limited chemostat culture. (c) 1993 John Wiley & Sons, Inc.  相似文献   
62.
63.
64.
Mitogen-activated protein (MAP) kinases comprise an evolutionarily conserved family of proteins that includes at least three vertebrate protein kinases (p42, p44, and p55 MAPK) and five yeast protein kinases (SPK1, MPK1, HOG1, FUS3, and KSS1). Members of this family are activated by a variety of extracellular agents that influence cellular proliferation and differentiation. In Saccharomyces cerevisiae, there are multiple physiologically distinct MAP kinase activation pathways composed of structurally related kinases. The recently cloned vertebrate MAP kinase activators are structurally related to MAP kinase activators in these yeast pathways. These similarities suggest that homologous kinase cascades are utilized for signal transduction in many, if not all, eukaryotes. We have identified additional members of the MAP kinase activator family in Xenopus laevis by a polymerase chain reaction-based analysis of embryonic cDNAs. One of the clones identified (XMEK2) encodes a unique predicted protein kinase that is similar to the previously reported activator (MAPKK) in X. laevis. XMEK2, a highly expressed maternal mRNA, is developmentally regulated during embryogenesis and expressed in brain and muscle. Expression of XMEK2 in yeast cells suppressed the growth defect associated with loss of the yeast MAP kinase activator homologs, MKK1 and MKK2. Partial sequence of a second cDNA clone (XMEK3) identified yet another potential MAP kinase activator. The pattern of expression of XMEK3 is distinct from that of p42 MAPK and XMEK2. The high degree of amino acid sequence similarity of XMEK2, XMEK3, and MAPKK suggests that these three are related members of an amphibian family of protein kinases involved in the activation of MAP kinase. Discovery of this family suggests that multiple MAP kinase activation pathways similar to those in yeast cells exist in vertebrates.  相似文献   
65.
66.
67.
Traditional regression analysis of body weight growth curvesencounters problems .when the data are extremely variable. Whiletransformations are often employed to meet the criteria of theanalysis, some transformations are inadequate for normalizingthe data. Regression analysis also requires presuppositionsregarding the model to be fit and the techniques to be usedin the analysis. An alternative approach using artificial neuralnetworks is presented which may be suitable for developing predictivemodels of growth. Neural networks are simulators of the processesthat occur in the biological brain during the learning process.They are trained on the data, developing the necessary algorithmswithin their internal architecture, and produce a predictivemodel based on the learned facts. A dataset of Sprague–Dawleyrat (Rattus norvegicus) weights is analyzed by both traditionalregression analysis and neural network training. Predictionsof body weight are made from both models. While both methodsproduce models that adequately predict the body weights, theneural network model is superior in that it combines accuracyand precision, being less influenced by longitudinal variabilityin the data. Thus, the neural network provides another toolfor researchers to analyze growth curve data.  相似文献   
68.
69.
70.
A number of serious hereditary disorders are now known to be associated with defective expression of collagen genes, and these findings have underscored the important and varied roles that the collagen family of genes must play during normal mammalian development. Although the activities of genes encoding the quantitatively major types of collagen are fairly well characterized, functions of the many minor types of collagen remain a matter of speculation. As a first step toward a functional analysis of type XI collagen, a member of this class of poorly understand minor collagen proteins which is expressed primarily in hyaline cartilage, we have used human probes for the gene encoding the protein's 2-subunit (COL11A2) to isolate and map homologous murine DNA sequences. Our results demonstrate that Col11a-2 is embedded within the major histocompatibility complex (MHC), within 8.4 kb of the class II pseudogene locus, Pb, and confirm that human and murine 2(XI) collagen genes are located in very similar genomic environments. The conserved location of these genes raises the possibility that type XI collagen genes may contribute to one or more of the diverse hereditary disorders known to be linked to the MHC in mouse and human.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号