首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3469篇
  免费   314篇
  国内免费   9篇
  3792篇
  2022年   46篇
  2021年   79篇
  2020年   31篇
  2019年   46篇
  2018年   65篇
  2017年   52篇
  2016年   86篇
  2015年   181篇
  2014年   201篇
  2013年   209篇
  2012年   250篇
  2011年   266篇
  2010年   161篇
  2009年   123篇
  2008年   169篇
  2007年   185篇
  2006年   155篇
  2005年   163篇
  2004年   149篇
  2003年   134篇
  2002年   132篇
  2001年   109篇
  2000年   104篇
  1999年   70篇
  1998年   30篇
  1997年   22篇
  1996年   17篇
  1995年   12篇
  1994年   20篇
  1993年   16篇
  1992年   42篇
  1991年   46篇
  1990年   29篇
  1989年   44篇
  1988年   16篇
  1987年   33篇
  1986年   31篇
  1985年   25篇
  1984年   24篇
  1983年   19篇
  1982年   22篇
  1981年   16篇
  1980年   14篇
  1979年   17篇
  1978年   20篇
  1977年   11篇
  1976年   14篇
  1974年   13篇
  1973年   11篇
  1972年   10篇
排序方式: 共有3792条查询结果,搜索用时 15 毫秒
81.
Gallbladder carcinoma (GBC) is a vicious and invasive disease. The major challenge in the clinical treatment of GBC is the lack of a suitable prognosis method. Chemokine receptors such as CXCR3, CXCR4 and CXCR7 play vital roles in the process of tumour progression and metastasis. Their expression levels and distribution are proven to be indicative of the progression of GBC, but are hard to be decoded by conventional pathological methods, and therefore, not commonly used in the prognosis of GBC. In this study, we developed a computer‐aided image analysis method, which we used to quantitatively measure the expression levels of CXCR3, CXCR4 and CXCR7 in the nuclei and cytoplasm of glandular and interstitial cells from a cohort of 55 GBC patients. We found that CXCR3, CXCR4 and CXCR7 expressions are associated with the clinicopathological variables of GBC. Cytoplasmic CXCR3, nuclear CXCR7 and cytoplasmic CXCR7 were significant predictive factors of histology invasion, whereas cytoplasmic CXCR4 and nuclear CXCR4 were significantly correlated with T and N stage and were associated with the overall survival and disease‐free survival. These results suggest that the quantification and localisation of CXCR3, CXCR4 and CXCR7 expressions in different cell types should be considered using computer‐aided assessment to improve the accuracy of prognosis in GBC.  相似文献   
82.
Historically, therapeutic protein production in Chinese hamster ovary (CHO) cells has been accomplished by random integration (RI) of expression plasmids into the host cell genome. More recently, the development of targeted integration (TI) host cells has allowed for recombination of plasmid DNA into a predetermined genomic locus, eliminating one contributor to clone-to-clone variability. In this study, a TI host capable of simultaneously integrating two plasmids at the same genomic site was used to assess the effect of antibody heavy chain and light chain gene dosage on antibody productivity. Our results showed that increasing antibody gene copy number can increase specific productivity, but with diminishing returns as more antibody genes are added to the same TI locus. Random integration of additional antibody DNA copies in to a targeted integration cell line showed a further increase in specific productivity, suggesting that targeting additional genomic sites for gene integration may be beneficial. Additionally, the position of antibody genes in the two plasmids was observed to have a strong effect on antibody expression level. These findings shed light on vector design to maximize production of conventional antibodies or tune expression for proper assembly of complex or bispecific antibodies in a TI system.  相似文献   
83.
84.
85.
86.
Microcarriers are synthetic particles used in bioreactor-based cell manufacturing of anchorage-dependent cells to promote proliferation at efficient physical volumes, mainly by increasing the surface area-to-volume ratio. Mesenchymal stromal cells (MSCs) are adherent cells that are used for numerous clinical trials of autologous and allogeneic cell therapy, thus requiring avenues for large-scale cell production at efficiently low volumes and cost. Here, a dissolvable gelatin-based microcarrier is developed for MSC expansion. This novel microcarrier shows comparable cell attachment efficiency and proliferation rate when compared to several commercial microcarriers, but with higher harvesting yield due to the direct dissolution of microcarrier particles and thus reduced cell loss at the cell harvesting step. Furthermore, gene expression and in vitro differentiation suggest that MSCs cultured on gelatin microcarriers maintain trilineage differentiation with similar adipogenic differentiation efficiency and higher chondrogenic and osteogenic differentiation efficiency when compared to MSCs cultured on 2D planar polystyrene tissue culture flask; on the contrary, MSCs cultured on conventional microcarriers appear to be bipotent along osteochondral lineages whereby adipogenic differentiation potential is impeded. These results suggest that these gelatin microcarriers are suitable for MSC culture and expansion, and can also potentially be extended for other types of anchorage-dependent cells.  相似文献   
87.
International Journal of Peptide Research and Therapeutics - Bioactive peptides have emerged as promising therapeutic alternatives in pharmaceutical industry, especially to fight cancer. Here we...  相似文献   
88.
GOLPH3 is a phosphatidylinositol-4-phosphate (PI4P) effector that plays an important role in maintaining Golgi architecture and anterograde trafficking. GOLPH3 does so through its ability to link trans-Golgi membranes to F-actin via its interaction with myosin 18A (MYO18A). GOLPH3 also is known to be an oncogene commonly amplified in human cancers. GOLPH3L is a GOLPH3 paralogue found in all vertebrate genomes, although previously it was largely uncharacterized. Here we demonstrate that although GOLPH3 is ubiquitously expressed in mammalian cells, GOLPH3L is present in only a subset of tissues and cell types, particularly secretory tissues. We show that, like GOLPH3, GOLPH3L binds to PI4P, localizes to the Golgi as a consequence of its PI4P binding, and is required for efficient anterograde trafficking. Surprisingly, however, we find that perturbations of GOLPH3L expression produce effects on Golgi morphology that are opposite to those of GOLPH3 and MYO18A. GOLPH3L differs critically from GOLPH3 in that it is largely unable to bind to MYO18A. Our data demonstrate that despite their similarities, unexpectedly, GOLPH3L antagonizes GOLPH3/MYO18A at the Golgi.  相似文献   
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号