首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3486篇
  免费   315篇
  国内免费   9篇
  2022年   47篇
  2021年   79篇
  2020年   31篇
  2019年   46篇
  2018年   65篇
  2017年   51篇
  2016年   87篇
  2015年   180篇
  2014年   201篇
  2013年   213篇
  2012年   251篇
  2011年   269篇
  2010年   164篇
  2009年   124篇
  2008年   170篇
  2007年   186篇
  2006年   156篇
  2005年   163篇
  2004年   149篇
  2003年   134篇
  2002年   132篇
  2001年   109篇
  2000年   104篇
  1999年   70篇
  1998年   31篇
  1997年   22篇
  1996年   16篇
  1995年   11篇
  1994年   20篇
  1993年   16篇
  1992年   42篇
  1991年   45篇
  1990年   30篇
  1989年   44篇
  1988年   16篇
  1987年   34篇
  1986年   31篇
  1985年   25篇
  1984年   24篇
  1983年   19篇
  1982年   22篇
  1981年   16篇
  1980年   14篇
  1979年   17篇
  1978年   20篇
  1977年   12篇
  1976年   14篇
  1974年   14篇
  1973年   11篇
  1972年   10篇
排序方式: 共有3810条查询结果,搜索用时 15 毫秒
171.
Low-intensity (<100 mW/cm(2)) pulsed ultrasound (US) is an established therapy for fracture repair. In both animal and human trials, such US has been shown to facilitate fresh fracture repair and initiate healing in fractures with repair defects. However, the mechanism by which US achieves these outcomes is not clear. One possible mechanism is the direct stimulation of bone formation. To investigate this hypothesis, the current study investigated the mRNA response of isolated bone-forming cells (UMR-106 cells) to a single 20-min dose of low-intensity pulsed US. Using a novel US-cell coupling method, US was found to stimulate expression of the immediate-early response genes c-fos and COX-2 and elevate mRNA levels for the bone matrix proteins ALP and OC. These findings suggest that low-intensity pulsed US has a direct effect on bone formation. This may contribute to the beneficial effect of low-intensity pulsed US on fracture repair.  相似文献   
172.
The myotonic dystrophy kinase-related kinases RhoA binding kinase and myotonic dystrophy kinase-related Cdc42 binding kinase (MRCK) are effectors of RhoA and Cdc42, respectively, for actin reorganization. Using substrate screening in various tissues, we uncovered two major substrates, p130 and p85, for MRCKalpha-kinase. p130 is identified as myosin binding subunit p130, whereas p85 is a novel related protein. p85 contains N-terminal ankyrin repeats, an alpha-helical C terminus with leucine repeats, and a centrally located conserved motif with the MRCKalpha-kinase phosphorylation site. Like MBS130, p85 is specifically associated with protein phosphatase 1delta (PP1delta), and this requires the N terminus, including the ankyrin repeats. This association is required for the regulation of both the catalytic activities and the assembly of actin cytoskeleton. The N terminus, in association with PP1delta, is essential for actin depolymerization, whereas the C terminus antagonizes this action. The C-terminal effects consist of two independent events that involved both the conserved phosphorylation inhibitory motif and the alpha-helical leucine repeats. The former was able to interact with PP1delta only in the phosphorylated state and result in inactivation of PP1delta activity. This provides further evidence that phosphorylation of a myosin binding subunit protein by specific kinases confers conformational changes in a highly conserved region that plays an essential role in the regulation of its catalytic subunit activities.  相似文献   
173.
The accumulation of triosephosphates and the increased formation of the potent glycating agent methylglyoxal in intracellular hyperglycaemia are implicated in the development of diabetic complications. A strategy to counter this is to stimulate the anaerobic pentosephosphate pathway of glycolysis by maximizing transketolase activity by thiamine supplementation, with the consequent consumption of glyceraldehyde-3-phosphate and increased formation of ribose-5-phosphate. To assess the effect of thiamine supplementation on the accumulation of triosephosphates and methylglyoxal formation in cellular hyperglycaemia, we incubated human red blood cell suspensions (50% v/v) in short-term culture with 5 mM glucose and 50 mM glucose in Krebs-Ringer phosphate buffer at 37 degrees C as models of cellular metabolism under normoglycaemic and hyperglycaemic conditions. In hyperglycaemia, there is a characteristic increase in the concentration of the triosephosphate pool of glycolytic intermediates and a consequent increase in the concentration and metabolic flux of the formation of methylglyoxal. The addition of thiamine (50-500 microM) increased the activity of transketolase, decreased the concentration of the triosephosphate pool, decreased the concentration and metabolic flux of the formation of methylglyoxal, and increased the concentration of total sedoheptulose-7-phosphate and ribose-5-phosphate. Biochemical changes implicated in the development of diabetic complications were thereby prevented. This provides a biochemical basis for high dose thiamine therapy for the prevention of diabetic complications.  相似文献   
174.
The transmission of the mating signal of the budding yeast Saccharomyces cerevisiae requires Ste20p, a member of the serine/threonine protein kinases of the Ste20p/PAK family, to link the Gbeta subunit of the heterotrimeric G protein to the mitogen-activated protein kinase cascades. The binding site of Ste20p to the Gbeta subunit was mapped to a consensus sequence of SSLphiPLI/VXphiphibeta (X for any residue; phi for A, I, L, S or T; beta for basic residues), which was shown to be a novel Gbeta binding (GBB) motif present only in the noncatalytic C-terminal domains of the Ste20p/PAK family of protein kinases (Leeuw, T., Wu, C., Schrag, J. D., Whiteway, M., Thomas, D. Y., and Leberer, E. (1998) Nature 391, 191-195; Leberer, E., Dignard, D., Thomas, D. Y., and Leeuw, T. (2000) Biol. Chem. 381, 427-431). Here, we report the results of an NMR study on two GBB motif peptides and the entire C-terminal domain derived from Ste20p. The NMR data show that the two peptide fragments are not uniquely structured in aqueous solution, but in the presence of 40% trifluoroethanol, the longer 37-residue peptide exhibited two well defined, but flexibly linked helical structure elements. Heteronuclear NMR data indicate that the fully functional 86-residue C-terminal domain of Ste20p is again unfolded in aqueous solution but has helical secondary structure preferences similar to those of the two peptide fragments. The NMR results on the two GBB peptides and the entire GBB domain all indicate that the two important binding residues, Ser(879) and Ser(880), are located at the junction between two helical segments. These experimental observations with the prototype GBB domain of a novel family of Gbeta-controlled effectors may have important implications in understanding the molecular mechanisms of the signal transduction from the heterotrimeric G protein to the mitogen-activated protein kinase cascade.  相似文献   
175.
The oxidation of apolipoprotein B-containing lipoproteins and cell membrane lipids is believed to play an integral role in the development of fatty streak lesions, an initial step in atherogenesis. We have previously shown that two antioxidant-like enzymes, paraoxonase (PON)-1 and PON3, are high density lipoprotein-associated proteins capable of preventing the oxidative modification of low density lipoprotein (LDL) (Reddy, S. T., Wadleigh, D. J., Grijalva, V., Ng, C., Hama, S., Gangopadhyay, A., Shih, D. M., Lusis, A. J., Navab, M., and Fogelman, A. M. (2001) Arterioscler. Thromb. Vasc. Biol. 21, 542-547). In the present study, we demonstrate that PON2 (i) is not associated with high density lipoprotein; (ii) has antioxidant properties; and (iii) prevents LDL lipid peroxidation, reverses the oxidation of mildly oxidized LDL (MM-LDL), and inhibits the ability of MM-LDL to induce monocyte chemotaxis. The PON2 protein was overexpressed in HeLa cells using the tetracycline-inducible ("Tet-On") system, and its antioxidant capacity was measured in a fluorometric assay. Cells that overexpressed PON2 showed significantly less intracellular oxidative stress following treatment with hydrogen peroxide or oxidized phospholipid. Moreover, cells that overexpressed PON2 were also less effective in oxidizing and modifying LDL and, in fact, were able to reverse the effects of preformed MM-LDL. Our results suggest that PON2 possesses antioxidant properties similar to those of PON1 and PON3. However, in contrast to PON1 and PON3, PON2 may exert its antioxidant functions at the cellular level, joining the host of intracellular antioxidant enzymes that protect cells from oxidative stress.  相似文献   
176.
We have cloned and expressed murine osteoclast inhibitory lectin (mOCIL), a 207-amino acid type II transmembrane C-type lectin. In osteoclast formation assays of primary murine calvarial osteoblasts with bone marrow cells, antisense oligonucleotides for mOCIL increased tartrate-resistant acid phosphatase-positive mononucleate cell formation by 3-5-fold, whereas control oligonucleotides had no effect. The extracellular domain of mOCIL, expressed as a recombinant protein in Escherichia coli, dose-dependently inhibited multinucleate osteoclast formation in murine osteoblast and spleen cell co-cultures as well as in spleen cell cultures treated with RANKL and macrophage colony-stimulating factor. Furthermore, mOCIL acted directly on macrophage/monocyte cells as evidenced by its inhibitory action on adherent spleen cell cultures, which were depleted of stromal and lymphocytic cells. mOCIL completely inhibited osteoclast formation during the proliferative phase of osteoclast formation and resulted in 70% inhibition during the differentiation phase. Osteoblast OCIL mRNA expression was enhanced by parathyroid hormone, calcitriol, interleukin-1alpha and -11, and retinoic acid. In rodent tissues, Northern blotting, in situ hybridization, and immunohistochemistry demonstrated OCIL expression in osteoblasts and chondrocytes as well as in a variety of extraskeletal tissues. The overlapping tissue distribution of OCIL mRNA and protein with that of RANKL strongly suggests an interaction between these molecules in the skeleton and in extraskeletal tissues.  相似文献   
177.
178.
179.
Arginine biosynthetic genes from Campylobacter jejuni TGH9011 were cloned by functional complementation of the respective Escherichia coli arginine biosynthetic mutants. Complementation of argA, argB, argC, argD, argE, argF, and argH auxotrophs was accomplished using a pBR322-based C. jejuni TGH9011 plasmid library. By cross-complementation analyses, the first four steps of arginine biosynthesis were shown to be closely linked on the genome. Two additional clones complementing the first (ArgA) and fifth (ArgE) steps in arginine biosynthesis were obtained. Neither recombinant showed linkage to the arg cluster, to each other, nor to other arginine biosynthetic functions by cross-complementation. Genes argF and argH were not linked to other arginine biosynthetic genes by cross-complementation analysis. Restriction enzyme patterns of recombinant plasmids fell into five groups. Group I contained the arg(ABCD) complementing locus. Group II and Group III were the two genetic loci corresponding to the argA and argE complementing genes. Group II contains the hipO gene encoding N-benzoylglycine-amino-acid amidohydrolase, also known as hippurate hydrolase. Group III contains the hipO homolog of C. jejuni. Group IV represents the argF gene. Group V is the argH gene. Functional complementation of mutations in the first four steps of the arginine biosynthetic pathway was obtained on recombinant plasmid pARGC2. The predicted order of gene complementation was argCargA(argBargD). The sequence of the insert in plasmid pARGC2 revealed direct homologs for argC, argB, and argD. However, sequence analysis of the gene complementing ArgA function in two separate E. coli argA mutants determined that the C. jejuni gene was not a canonical argA gene. The gene complementing the argA defect, which we call argO, showed limited homology to the streptothricin acetyltransferase gene (sat) of Escherichia coli. The flanking open reading frames in pARGC2 showed no homologies to arginine biosynthetic genes. The structure of the argCOBD gene arrangement is discussed with reference to the presence and location of other arginine biosynthetic genes on the genome of C. jejuni and other bacterial organisms.  相似文献   
180.
Ng P  Baker MD 《Genetics》1999,151(3):1143-1155
Gene targeting using sequence insertion vectors generally results in integration of one copy of the targeting vector generating a tandem duplication of the cognate chromosomal region of homology. However, occasionally the target locus is found to contain >1 copy of the integrated vector. The mechanism by which the latter recombinants arise is not known. In the present study, we investigated the molecular basis by which multiple vectors become integrated at the chromosomal immunoglobulin mu locus in a murine hybridoma. To accomplish this, specially designed insertion vectors were constructed that included six diagnostic restriction enzyme markers in the Cmu region of homology to the target chromosomal mu locus. This enabled contributions by the vector-borne and chromosomal Cmu sequences at the recombinant locus to be ascertained. Targeted recombinants were isolated and analyzed to determine the number of vector copies integrated at the chromosomal immunoglobulin mu locus. Targeted recombinants identified as bearing >1 copy of the integrated vector resulted from a Cmu triplication formed by two vector copies in tandem. Examination of the fate of the Cmu region markers suggested that this class of recombinant was generated predominantly, if not exclusively, by two targeted vector integration events, each involving insertion of a single copy of the vector. Both vector insertion events into the chromosomal mu locus were consistent with the double-strand-break repair mechanism of homologous recombination. We interpret our results, taken together, to mean that a proportion of recipient cells is in a predetermined state that is amenable to targeted but not random vector integration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号