首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28585篇
  免费   2561篇
  国内免费   17篇
  2023年   118篇
  2022年   327篇
  2021年   684篇
  2020年   402篇
  2019年   481篇
  2018年   561篇
  2017年   516篇
  2016年   845篇
  2015年   1421篇
  2014年   1603篇
  2013年   1810篇
  2012年   2377篇
  2011年   2422篇
  2010年   1537篇
  2009年   1250篇
  2008年   1877篇
  2007年   1780篇
  2006年   1590篇
  2005年   1591篇
  2004年   1581篇
  2003年   1362篇
  2002年   1207篇
  2001年   330篇
  2000年   258篇
  1999年   276篇
  1998年   272篇
  1997年   184篇
  1996年   178篇
  1995年   140篇
  1994年   170篇
  1993年   141篇
  1992年   160篇
  1991年   129篇
  1990年   96篇
  1989年   109篇
  1988年   90篇
  1987年   106篇
  1986年   84篇
  1985年   87篇
  1984年   101篇
  1983年   104篇
  1982年   95篇
  1981年   79篇
  1980年   78篇
  1979年   59篇
  1978年   71篇
  1977年   47篇
  1976年   56篇
  1975年   32篇
  1974年   43篇
排序方式: 共有10000条查询结果,搜索用时 390 毫秒
991.
992.
Mammalian Dicer interacts with double-stranded RNA-binding protein TRBP or PACT to mediate RNA interference and micro-RNA processing. TRBP and PACT are structurally related but exert opposite regulatory activities on PKR. It is not understood whether TRBP and PACT are simultaneously required for Dicer. Here we show that TRBP directly interacts with PACT in vitro and in mammalian cells. TRBP and PACT form a triple complex with Dicer and facilitate the production of small interfering RNA (siRNA) by Dicer. Knockdown of both TRBP and PACT in cultured cells leads to significant inhibition of gene silencing mediated by short hairpin RNA but not by siRNA, suggesting that TRBP and PACT function primarily at the step of siRNA production. Taken together, these findings indicate that human TRBP and PACT directly interact with each other and associate with Dicer to stimulate the cleavage of double-stranded or short hairpin RNA to siRNA. Our work significantly alters the current model for the assembly and function of the Dicer-containing complex that generates siRNA and micro-RNA in human.  相似文献   
993.
The Escherichia coli mispair-binding protein MutS forms dimers and tetramers in vitro, although the functional form in vivo is under debate. Here we demonstrate that the MutS tetramer is extended in solution using small angle x-ray scattering and the crystal structure of the C-terminal 34 amino acids of MutS containing the tetramer-forming domain fused to maltose-binding protein (MBP). Wild-type C-terminal MBP fusions formed tetramers and could bind MutS and MutS-MutL-DNA complexes. In contrast, D835R and R840E mutations predicted to disrupt tetrameric interactions only allowed dimerization of MBP. A chromosomal MutS truncation mutation eliminating the dimerization/tetramerization domain eliminated mismatch repair, whereas the tetramer-disrupting MutS D835R and R840E mutations only modestly affected MutS function. These results demonstrate that dimerization but not tetramerization of the MutS C terminus is essential for mismatch repair.  相似文献   
994.
Although CD36 is generally recognized to be an inhibitory signaling receptor for thrombospondin-1 (TSP1), the molecular mechanism for transduction of this signal remains unclear. Based on evidence that myristic acid and TSP1 each modulate endothelial cell nitric oxide signaling in a CD36-dependent manner, we examined the ability of TSP1 to modulate the fatty acid translocase activity of CD36. TSP1 and a CD36 antibody that mimics the activity of TSP1 inhibited myristate uptake. Recombinant TSP1 type 1 repeats were weakly inhibitory, but an anti-angiogenic peptide derived from this domain potently inhibited myristate uptake. This peptide also inhibited membrane translocation of the myristoylated CD36 signaling target Fyn and activation of Src family kinases. Myristate uptake stimulated cGMP synthesis via endothelial nitric-oxide synthase and soluble guanylyl cyclase. CD36 ligands blocked myristate-stimulated cGMP accumulation in proportion to their ability to inhibit myristate uptake. TSP1 also inhibited myristate-stimulated cGMP synthesis by engaging its receptor CD47. Myristate stimulated endothelial and vascular smooth muscle cell adhesion on type I collagen via the NO/cGMP pathway, and CD36 ligands that inhibit myristate uptake blocked this response. Therefore, the fatty acid translocase activity of CD36 elicits proangiogenic signaling in vascular cells, and TSP1 inhibits this response by simultaneously inhibiting fatty acid uptake via CD36 and downstream cGMP signaling via CD47.  相似文献   
995.
Acyl carrier protein (ACP), a small protein essential for bacterial growth and pathogenesis, interacts with diverse enzymes during the biosynthesis of fatty acids, phospholipids, and other specialized products such as lipid A. NMR and hydrodynamic studies have previously shown that divalent cations stabilize native helical ACP conformation by binding to conserved acidic residues at two sites (A and B) at either end of the "recognition" helix II. To examine the roles of these amino acids in ACP structure and function, site-directed mutagenesis was used to replace individual site A (Asp-30, Asp-35, Asp-38) and site B (Glu-47, Glu-53, Asp-56) residues in recombinant Vibrio harveyi ACP with the corresponding amides, along with combined mutations at each site (SA, SB) or both sites (SA/SB). Like native V. harveyi ACP, all individual mutants were unfolded at neutral pH but adopted a helical conformation in the presence of millimolar Mg(2+) or upon fatty acylation. Mg(2+) binding to sites A or B independently stabilized native ACP conformation, whereas mutant SA/SB was folded in the absence of Mg(2+), suggesting that charge neutralization is largely responsible for ACP stabilization by divalent cations. Asp-35 in site A was critical for holo-ACP synthase activity, while acyl-ACP synthetase and UDP-N-acetylglucosamine acyltransferase (LpxA) activities were more affected by mutations in site B. Both sites were required for fatty acid synthase activity. Overall, our results indicate that divalent cation binding site mutations have predicted effects on ACP conformation but unpredicted and variable consequences on ACP function with different enzymes.  相似文献   
996.
The protein C (PC) pathway plays an important role in coagulation and inflammation. Many components of the PC pathway have been identified in epidermal keratinocytes, including endothelial protein C receptor (EPCR), which is the specific receptor for PC/activated PC (APC), but the core member of this pathway, PC, and its function in keratinocytes has not been defined. In this study, we reveal that PC is strongly expressed by human keratinocytes at both gene and protein levels. When endogenous PC was blocked by siRNA the proliferation of keratinocytes was significantly decreased. This inhibitory effect was restored by the addition of recombinant APC. PC siRNA treatment also increased cell apoptosis by 3-fold and inhibited cell migration by more than 20%. When keratinocytes were pretreated with RCR252, an EPCR-blocking antibody, or PD153035, an epidermal growth factor receptor (EGFR) inhibitor, cell proliferation was hindered by more than 30%. These inhibitors also completely abolished recombinant APC (10 mug/ml)-stimulated proliferation. Blocking PC expression or inhibiting its binding to EPCR/EGFR decreased the phosphorylation of ERK1/2 but increased p38 activation. Furthermore, inhibition of ERK decreased cell proliferation by approximately 30% and completely abolished the stimulatory effect of APC on proliferation. Taken together, these results indicate that keratinocyte-derived PC promotes cell survival, growth, and migration in an autocrine manner via EPCR, EGFR, and activation of ERK1/2. Our results highlight a novel role for the PC pathway in normal skin physiology and wound healing.  相似文献   
997.
The structurally related glutathione S-transferase isoforms GSTA1-1 and GSTA4-4 differ greatly in their relative catalytic promiscuity. GSTA1-1 is a highly promiscuous detoxification enzyme. In contrast, GSTA4-4 exhibits selectivity for congeners of the lipid peroxidation product 4-hydroxynonenal. The contribution of protein dynamics to promiscuity has not been studied. Therefore, hydrogen/deuterium exchange mass spectrometry (H/DX) and fluorescence lifetime distribution analysis were performed with glutathione S-transferases A1-1 and A4-4. Differences in local dynamics of the C-terminal helix were evident as expected on the basis of previous studies. However, H/DX demonstrated significantly greater solvent accessibility throughout most of the GSTA1-1 sequence compared with GSTA4-4. A Phe-111/Tyr-217 aromatic-aromatic interaction in A4-4, which is not present in A1-1, was hypothesized to increase core packing. "Swap" mutants that eliminate this interaction from A4-4 or incorporate it into A1-1 yield H/DX behavior that is intermediate between the wild type templates. In addition, the single Trp-21 residue of each isoform was exploited to probe the conformational heterogeneity at the intrasubunit domain-domain interface. Excited state fluorescence lifetime distribution analysis indicates that this core residue is more conformationally heterogeneous in GSTA1-1 than in GSTA4-4, and this correlates with greater stability toward urea denaturation for GSTA4-4. The fluorescence distribution and urea sensitivity of the mutant proteins were intermediate between the wild type templates. The results suggest that the differences in protein dynamics of these homologs are global. The results suggest also the possible importance of extensive conformational plasticity to achieve high levels of functional promiscuity, possibly at the cost of stability.  相似文献   
998.
The role of the fibronectin IGD motif in stimulating fibroblast migration   总被引:1,自引:0,他引:1  
The motogenic activity of migration-stimulating factor, a truncated isoform of fibronectin (FN), has been attributed to the IGD motifs present in its FN type 1 modules. The structure-function relationship of various recombinant IGD-containing FN fragments is now investigated. Their structure is assessed by solution state NMR and their motogenic ability tested on fibroblasts. Even conservative mutations in the IGD motif are inactive or have severely reduced potency, while the structure remains essentially the same. A fragment with two IGD motifs is 100 times more active than a fragment with one and up to 10(6) times more than synthetic tetrapeptides. The wide range of potency in different contexts is discussed in terms of cryptic FN sites and cooperativity. These results give new insight into the stimulation of fibroblast migration by IGD motifs in FN.  相似文献   
999.
Janus kinase 3 (Jak3) is a non-receptor tyrosine kinase known to be expressed in hematopoietic cells. Studies of whole organ homogenates show that Jak3 is also expressed in the intestines of both human and mice. However, neither its expression nor its function has been defined in intestinal epithelial enterocytes. The present studies demonstrate that functional Jak3 is expressed in human intestinal enterocytes HT-29 Cl-19A and Caco-2 and plays an essential role in the intestinal epithelial wound repair process in response to interleukin 2 (IL-2). Exogenous IL-2 enhanced the wound repair of intestinal enterocytes in a dose-dependent manner. Activation by IL-2 led to rapid tyrosine phosphorylation and redistribution of Jak3. IL-2-stimulated redistribution of Jak3 was inhibited by the Jak3-specific inhibitor WHI-P131. IL-2 also induced Jak3-dependent redistribution of the actin cytoskeleton in migrating cells. In these cells Jak3 interacted with the intestinal and renal epithelial cell-specific cytoskeletal protein villin in an IL-2-dependent manner. Inhibition of Jak3 activation resulted in loss of tyrosine phosphorylation of villin and a significant decrease in wound repair of the intestinal epithelial cells. Previously, we had shown that tyrosine phosphorylation of villin is important for cytoskeletal remodeling and cell migration. The present study demonstrates a novel pathway in intestinal enterocytes in which IL-2 enhances intestinal wound repair through mechanisms involving Jak3 and its interactions with villin.  相似文献   
1000.
Signaling through the mammalian target of rapamycin complex 1 (mTORC1) is positively regulated by amino acids and insulin. PRAS40 associates with mTORC1 (which contains raptor) but not mTORC2. PRAS40 interacts with raptor, and this requires an intact TOR-signaling (TOS) motif in PRAS40. Like TOS motif-containing proteins such as eIF4E-binding protein 1 (4E-BP1), PRAS40 is a substrate for phosphorylation by mTORC1. Consistent with this, starvation of cells of amino acids or treatment with rapamycin alters the phosphorylation of PRAS40. PRAS40 binds 14-3-3 proteins, and this requires both amino acids and insulin. Binding of PRAS40 to 14-3-3 proteins is inhibited by TSC1/2 (negative regulators of mTORC1) and stimulated by Rheb in a rapamycin-sensitive manner. This confirms that PRAS40 is a target for regulation by mTORC1. Small interfering RNA-mediated knockdown of PRAS40 impairs both the amino acid- and insulin-stimulated phosphorylation of 4E-BP1 and the phosphorylation of S6. However, this has no effect on the phosphorylation of Akt or TSC2 (an Akt substrate). These data place PRAS40 downstream of mTORC1 but upstream of its effectors, such as S6K1 and 4E-BP1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号