首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   542篇
  免费   57篇
  599篇
  2018年   5篇
  2017年   7篇
  2016年   9篇
  2015年   10篇
  2014年   21篇
  2013年   25篇
  2012年   26篇
  2011年   30篇
  2010年   14篇
  2009年   11篇
  2008年   18篇
  2007年   11篇
  2006年   13篇
  2005年   13篇
  2004年   22篇
  2003年   22篇
  2002年   17篇
  2001年   12篇
  2000年   21篇
  1999年   17篇
  1998年   9篇
  1997年   4篇
  1996年   6篇
  1995年   7篇
  1994年   7篇
  1992年   5篇
  1991年   4篇
  1990年   6篇
  1989年   12篇
  1988年   7篇
  1987年   8篇
  1986年   8篇
  1985年   11篇
  1984年   13篇
  1983年   7篇
  1982年   8篇
  1981年   6篇
  1979年   10篇
  1978年   4篇
  1976年   9篇
  1975年   8篇
  1974年   9篇
  1972年   4篇
  1971年   4篇
  1970年   5篇
  1968年   4篇
  1967年   4篇
  1959年   5篇
  1950年   4篇
  1929年   3篇
排序方式: 共有599条查询结果,搜索用时 0 毫秒
141.
142.
143.
The procofactor, factor VIII, is activated by thrombin or factor Xa-catalyzed cleavage at three P1 residues: Arg-372, Arg-740, and Arg-1689. The catalytic efficiency for thrombin cleavage at Arg-740 is greater than at either Arg-1689 or Arg-372 and influences reaction rates at these sites. Because cleavage at Arg-372 appears rate-limiting and dependent upon initial cleavage at Arg-740, we investigated whether cleavage at Arg-1689 influences catalysis at this step. Recombinant B-domainless factor VIII mutants, R1689H and R1689Q were prepared and stably expressed to slow and eliminate cleavage, respectively. Specific activity values for the His and Gln mutations were ∼50 and ∼10%, respectively, that of wild type. Thrombin activation of the R1689H variant showed an ∼340-fold reduction in the rate of Arg-1689 cleavage, whereas the R1689Q variant was resistant to thrombin cleavage at this site. Examination of heavy chain cleavages showed ∼4- and 11-fold reductions in A2 subunit generation and ∼3- and 7-fold reductions in A1 subunit generation for the R1689H and R1689Q mutants, respectively. These results suggest a linkage between light chain cleavage and cleavages in heavy chain. Results obtained evaluating proteolysis of the factor VIII mutants by factor Xa revealed modest rate reductions (<5-fold) in generating A2 and A1 subunits and in cleaving light chain at Arg-1721 from either variant, suggesting little dependence upon prior cleavage at residue 1689 as compared with thrombin. Overall, these results are consistent with a competition between heavy and light chains for thrombin exosite binding and subsequent proteolysis with binding of the former chain preferred.Factor VIII, a plasma protein missing or defective in individuals with hemophilia A, is synthesized as an ∼300-kDa single chain polypeptide corresponding to 2332 amino acids. Within the protein are six domains based on internal homologies and ordered as NH2-A1-A2-B-A3-C1-C2-COOH (1, 2). Bordering the A domains are short segments containing high concentrations of acidic residues that follow the A1 and A2 domains and precede the A3 domain and are designated a1 (residues 337–372), a2 (residues 711–740), and a3 (1649–1689). Factor VIII is processed by cleavage at the B-A3 junction to generate a divalent metal ion-dependent heterodimeric protein composed of a heavy chain (A1-a1-A2-a2-B domains) and a light chain (a3-A3-C1-C2 domains) (3).The activated form of factor VIII, factor VIIIa, functions as a cofactor for factor IXa, increasing its catalytic efficiency by several orders of magnitude in the phospholipid- and Ca2+-dependent conversion of factor X to factor Xa (4). The factor VIII procofactor is converted to factor VIIIa through limited proteolysis catalyzed by thrombin or factor Xa (5, 6). Thrombin is believed to act as the physiological activator of factor VIII, as association of factor VIII with von Willebrand factor impairs the capacity for the membrane-dependent factor Xa to efficiently activate the procofactor (5, 7). Activation of factor VIII occurs through proteolysis by either protease via cleavage of three P1 residues at Arg-740 (A2-B domain junction), Arg-372 (A1-A2 domain junction), and Arg-1689 (a3-A3 junction) (5). After factor VIII activation, there is a weak electrostatic interaction between the A1 and A2 domains of factor VIIIa (8, 9) and spontaneous inactivation of the cofactor occurs through A2 subunit dissociation from the A1/A3-C1-C2 dimer, consequently dampening factor Xase (3).Thrombin cleavage of factor VIII appears to be an ordered pathway, with relative rates at Arg-740 > Arg-1689 > Arg-372 and the initial proteolysis at Arg-740 facilitating proteolysis at Arg-372 as well as Arg-1689 (10). This latter observation was based upon results showing that mutations at Arg-740, impairing this cleavage, significantly reduced cleavage rates at the two other P1 sites. Thrombin-catalyzed activation of factor VIII is dependent upon interactions involving the anion binding exosites of the proteinase (11, 12). Exosite binding is believed to determine substrate affinity, whereas subsequent active site docking primarily affects Vmax (13). Furthermore, the complex interactions involving multiple cleavages within a single substrate may utilize a ratcheting mechanism (14) where presentation of the scissile bond is facilitated by a prior cleavage event.Cleavage at Arg-372 is a critical step in thrombin activation of factor VIII as it exposes a cryptic functional factor IXa-interactive site in the A2 domain (15), whereas cleavage at Arg-1689 liberates factor VIII from von Willebrand factor (16) and contributes to factor VIIIa specific activity (17, 18). Although cleavage at Arg-740 represents a fast step relative to cleavages at other P1 residues in the activation of factor VIII (19), the influence of Arg-1689 cleavage on cleavages in the heavy chain remains unknown. In the present study cleavage at Arg-1689 is examined using recombinant factor VIII variants possessing single point mutations of R1689Q and R1689H. Results indicating reduced rates of A1 and A2 subunit generation, which are dependent upon the residue at position 1689, suggest that cleavage at Arg-1689 affects rates of proteolysis at Arg-740 and Arg-372. These observations are consistent with a mechanism whereby heavy chain and light chain compete for a binding thrombin exosite(s), with heavy chain preferred over light chain. In this competition mechanism, cleavage at Arg-740 is favored over Arg-1689. Subsequent cleavage at Arg-372 in heavy chain may involve a ratcheting mechanism after initial cleavage at Arg-740. On the other hand, the mechanism for factor Xa-catalyzed activation of factor VIII appears to be less dependent on cleavage at the Arg-1689 site as compared with thrombin.  相似文献   
144.
A procedure for the isolation and separation of three different subfractions of plasma membrane from the cellular slime mould Dictyostelium discoideum is described. The cells were disrupted by freeze-thawing in liquid N(2) and plasma membranes were purified by equilibrium centrifugation in a sucrose gradient. The cell surface was labelled with radioactive iodide by using the lactoperoxidase iodination method. Alkaline phosphatase was identified as a plasma-membrane marker by its co-distribution with [(125)I]iodide. 5'-Nucleotidase, which has been widely described as a plasma-membrane marker enzyme in mammalian tissues, was not localized to any marked extent in D. discoideum plasma membrane. The isolated plasma membranes showed a 24-fold enrichment of alkaline phosphatase specific activity relative to the homogenate and a yield of 50% of the total plasma membranes. Determination of succinate dehydrogenase and NADPH-cytochrome c reductase activities indicated that the preparation contained 2% of the total mitochondria and 3% of the endoplasmic reticulum. When the plasma-membrane preparation was further disrupted in a tight-fitting homogenizer, three plasma-membrane subfractions of different densities were obtained by isopycnic centrifugation. The enrichment of alkaline phosphatase was greatest in the subfraction with the lowest density. This fraction was enriched 36-fold relative to the homogenate and contained 19% of the total alkaline phosphatase activity but only 0.08% of the succinate dehydrogenase activity and 0.34% of the NADPH-cytochrome c reductase activity. Electron microscopy of this fraction showed it to consist of smooth membrane vesicles with no recognizable contaminants.  相似文献   
145.
146.
Pitcher plants (Sarracenia purpurea L.) attract insects to pitchers and then capture them in fluid-filled, pitfall traps, but how efficient are pitcher plants at capturing prey in their natural environment? We monitored insect activity by videotaping pitchers and analyzing videotapes for several variables including identity of each visitor and outcome of each visit (e.g., departure or capture). Efficiency of capture (i.e., number of captures per number of visits) was low. Overall efficiency of capture was 0.83–0.93%, depending on whether potential prey were broadly or narrowly defined. Ants constituted 74% of the potential prey. Efficiency of capture of ants was even lower at 0.37%. Potential prey were more likely to visit pitchers with greater red venation and less water in the pitcher. There was no correlation between number of potential prey visiting a pitcher and pitcher age, length, or mouth width. Also, number of potential prey visits did not correlate with plant size, air temperature, time of day or date of videotaping. While the overall efficiency of prey capture was very low, pitcher plants may still benefit from the additional nutrients. However, the relationship between ants and S. purpurea remains an enigma, since it is unclear whether the plants capture enough ants to compensate for nectar lost to ants.  相似文献   
147.
148.
149.
The identification of sites resulting in cross-contamination of poultry flocks in the abattoir and determination of the survival and persistence of campylobacters at these sites are essential for the development of intervention strategies aimed at reducing the microbial burden on poultry at retail. A novel molecule-based method, using strain- and genus-specific oligonucleotide probes, was developed to detect and enumerate specific campylobacter strains in mixed populations. Strain-specific oligonucleotide probes were designed for the short variable regions (SVR) of the flaA gene in individual Campylobacter jejuni strains. A 16S rRNA Campylobacter genus-specific probe was also used. Both types of probes were used to investigate populations of campylobacters by colony lift hybridization. The specificity and proof of principle of the method were tested using strains with closely related SVR sequences and mixtures of these strains. Colony lifts of campylobacters were hybridized sequentially with up to two labeled strain-specific probes, followed by the generic 16S rRNA probe. SVR probes were highly specific, differentiating down to 1 nucleotide in the target sequence, and were sufficiently sensitive to detect colonies of a single strain in a mixed population. The 16S rRNA probe detected all Campylobacter spp. tested but not closely related species, such as Arcobacter skirrowi and Helicobacter pullorum. Preliminary field studies demonstrated the application of this technique to target strains isolated from poultry transport crate wash tank water. This method is quantitative, sensitive, and highly specific and allows the identification and enumeration of selected strains among all of the campylobacters in environmental samples.  相似文献   
150.
Bacterial endotoxin (LPS) is responsible for much of the widespread inflammatory response seen in sepsis, a condition often accompanied by acute renal failure (ARF). In this work we report that mice deficient in TNFR1 (TNFR1(-/-)) were resistant to LPS-induced renal failure. Compared with TNFR1(+/+) controls, TNFR1(-/-) mice had less apoptosis in renal cells and fewer neutrophils infiltrating the kidney following LPS administration, supporting these as mediators of ARF. TNFR1(+/+) kidneys transplanted into TNFR1(-/-) mice sustained severe ARF after LPS injection, which was not the case with TNFR1(-/-) kidneys transplanted into TNFR1(+/+) mice. Therefore, TNF is a key mediator of LPS-induced ARF, acting through its receptor TNFR1 in the kidney.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号