首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   41篇
  国内免费   2篇
  2021年   2篇
  2019年   3篇
  2018年   2篇
  2016年   2篇
  2015年   3篇
  2014年   9篇
  2013年   12篇
  2012年   2篇
  2011年   9篇
  2010年   6篇
  2009年   1篇
  2008年   5篇
  2007年   8篇
  2006年   6篇
  2005年   6篇
  2004年   5篇
  2003年   5篇
  2002年   6篇
  2001年   3篇
  2000年   7篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1990年   7篇
  1989年   5篇
  1988年   5篇
  1986年   2篇
  1985年   4篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1979年   3篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1973年   1篇
  1970年   2篇
  1968年   1篇
  1965年   1篇
  1964年   1篇
  1900年   1篇
排序方式: 共有174条查询结果,搜索用时 15 毫秒
101.
Cranial base growth plates are important centers of longitudinal growth in the skull and are responsible for the proper anterior placement of the face and the stimulation of normal cranial vault development. We report that the presphenoidal synchondrosis (PSS), a midline growth plate of the cranial base, closes in the DBA/2J mouse strain but not in other common inbred strains. We investigated the genetics of PSS closure in DBA/2J mice by evaluating F1, F1 backcross, and/or F1 intercross offspring from matings with C57BL/6J and DBA/1J mice, whose PSS remain open. We observed that PSS closure is genetically determined, but not inherited as a simple Mendelian trait. Employing a genome-wide SNP array, we identified a region on chromosome 11 in the C57BL/6J strain that affected the frequency of PSS closure in F1 backcross and F1 intercross offspring. The equivalent region in the DBA/1J strain did not affect PSS closure in F1 intercross offspring. We conclude that PSS closure in the DBA/2J strain is complex and modified by different loci when outcrossed with C57BL/6J and DBA/1J mice.  相似文献   
102.
We have applied tethered particle microscopy (TPM) as a single molecule analysis tool to studies of the conformational dynamics of poly-uridine(U) messenger (m)RNA and 16S ribosomal (r)RNA molecules. Using stroboscopic total internal reflection illumination and rigorous selection criteria to distinguish from nonspecific tethering, we have tracked the nanometer-scale Brownian motion of RNA-tethered fluorescent microspheres in all three dimensions at pH 7.5, 22 degrees C, in 10 mM or 100 mM NaCl in the absence or presence of 10 mM MgCl(2). The addition of Mg(2+) to low-ionic strength buffer results in significant compaction and stiffening of poly(U) mRNA, but not of 16S rRNA. Furthermore, the motion of poly(U)-tethered microspheres is more heterogeneous than that of 16S rRNA-tethered microspheres. Analysis of in-plane bead motion suggests that poly(U) RNA, but less so 16S rRNA, can be modeled both in the presence and absence of Mg(2+) by a statistical Gaussian polymer model. We attribute these differences to the Mg(2+)-induced compaction of the relatively weakly structured and structurally disperse poly(U) mRNA, in contrast to Mg(2+)-induced reinforcement of existing secondary and tertiary structure contacts in the highly structured 16S rRNA. Both effects are nonspecific, however, as they are dampened in the presence of higher concentrations of monovalent cations.  相似文献   
103.
The enzyme thymidylate synthase (TS) catalyzes the reductive methylation of 2'-deoxyuridine 5'-monophosphate (dUMP) to 2'-deoxythymidine 5'-monophosphate. Using kinetic and X-ray crystallography experiments, we have examined the role of the highly conserved Tyr-261 in the catalytic mechanism of TS. While Tyr-261 is distant from the site of methyl transfer, mutants at this position show a marked decrease in enzymatic activity. Given that Tyr-261 forms a hydrogen bond with the dUMP 3'-O, we hypothesized that this interaction would be important for substrate binding, orientation, and specificity. Our results, surprisingly, show that Tyr-261 contributes little to these features of the mechanism of TS. However, the residue is part of the structural core of closed ternary complexes of TS, and conservation of the size and shape of the Tyr side chain is essential for maintaining wild-type values of kcat/Km. Moderate increases in Km values for both the substrate and cofactor upon mutation of Tyr-261 arise mainly from destabilization of the active conformation of a loop containing a dUMP-binding arginine. Besides binding dUMP, this loop has a key role in stabilizing the closed conformation of the enzyme and in shielding the active site from the bulk solvent during catalysis. Changes to atomic vibrations in crystals of a ternary complex of Escherichia coli Tyr261Trp are associated with a greater than 2000-fold drop in kcat/Km. These results underline the important contribution of dynamics to catalysis in TS.  相似文献   
104.
105.
Methane hydrate found in marine sediments is thought to contain gigaton quantities of methane and is considered an important potential fuel source and climate-forcing agent. Much of the methane in hydrates is biogenic, so models that predict the presence and distribution of hydrates require accurate rates of in situ methanogenesis. We estimated the in situ methanogenesis rates in Hydrate Ridge (HR) sediments by coupling experimentally derived minimal rates of methanogenesis to methanogen biomass determinations for discrete locations in the sediment column. When starved in a biomass recycle reactor, Methanoculleus submarinus produced ca. 0.017 fmol methane/cell/day. Quantitative PCR (QPCR) directed at the methyl coenzyme M reductase subunit A gene (mcrA) indicated that 75% of the HR sediments analyzed contained <1,000 methanogens/g. The highest numbers of methanogens were found mostly from sediments <10 m below seafloor. By considering methanogenesis rates for starved methanogens (adjusted to account for in situ temperatures) and the numbers of methanogens at selected depths, we derived an upper estimate of <4.25 fmol methane produced/g sediment/day for the samples with fewer methanogens than the QPCR method could detect. The actual rates could vary depending on the real number of methanogens and various seafloor parameters that influence microbial activity. However, our calculated rate is lower than rates previously reported for such sediments and close to the rate derived using geochemical modeling of the sediments. These data will help to improve models that predict microbial gas generation in marine sediments and determine the potential influence of this source of methane on the global carbon cycle.  相似文献   
106.
Changes in microbial populations were evaluated following inoculation of contaminated soil with a 3-chlorobenzoate degrader. Madera sandy loam was amended with 0, 500, or 1000 g 3-chlorobenzoate g-1 dry soil. Selected microcosms were inoculated with the degrader Comamonas testosteroni BR60. Culturable bacterial degraderswere enumerated on minimal salts media containing 3-chlorobenzoate. Culturableheterotrophic bacteria were enumerated on R2A. Isolated degraders were grouped by enterobacterial repetitive intergenic consensus sequence-polymerase chain reaction fingerprints and identified based on 16S ribosomal-DNA sequences. Bioaugmentation increased the rate of degradation at both levels of 3-chlorobenzoate. In both the 500 and 1000 g 3-chlorobenzoate g-1 dry soil inoculated microcosms, degradersincreased from the initial inoculum and decreased following degradation of 3-CB.Inoculation delayed the development of indigenous 3-chlorobenzoate degrading populations. It is unclear if inoculation altered the composition of indigenous degrader populations. In the uninoculated soil, degraders increased from undetectable levels to 6.6 × 107 colony-forming-units g-1 dry soil in the 500 g 3-chlorobenzoate g-1 dry soil microcosms, but none were detected in the 1000 g 3-chlorobenzoate g-1 dry soil microcosms. Degraders isolated from uninoculated soil were identified as one of two distinct Burkholderia species.In the uninoculated soil, numbers of culturable heterotrophic bacteria initially decreased following addition of 1000 g 3-chlorobenzoate g-1 dry soil. Inoculation with C. testosteroni reduced this negative impact on culturable bacterial numbers. The results indicate that bioaugmentation may not only increase the rate of 3-chlorobenzoate degradation but also reduce the deleterious effects of 3-chlorbenzoate on indigenous soil microbial populations.  相似文献   
107.
Smooth muscle cell (SMC) proliferation is suppressed in intact blood vessels but stimulated in atherosclerosis, restenosis after angioplasty, and vein graft disease. The cyclin-dependent kinase inhibitors, including p27(Kip1), play important roles in maintaining SMC quiescence. Levels of p27(Kip1) are dependent on attachment to and the composition of the extracellular matrix (ECM). Here we sought to elucidate mechanisms underlying the ECM-dependent regulation of p27(Kip1) and hence, SMC proliferation. Serum stimulation decreased p27(Kip1) levels in isolated SMC but not in rat aorta. The effect was post-translational and mediated by proteasomal degradation. We studied the S-phase-associated kinase protein-2 (Skp-2), an F-box protein involved in ubiquitination and proteasome-mediated degradation. Skp-2 protein is strongly induced by serum from undetectable levels in isolated SMCs but remains undetectable in aorta; Skp-2 mRNA is also lower in aorta. Overexpression of wild-type Skp-2 in SMCs decreased p27(Kip1) levels, whereas dominant negative F-box deleted mutant (DeltaF-Skp-2) Skp-2 increased p27(Kip1) levels. Furthermore, hyperphosphorylation of retinoblastoma protein and SMC proliferation were also reciprocally affected by wild-type and dominant negative Skp-2. Skp-2 expression was absolutely dependent on cell attachment to the ECM and was inhibited by laminin and type-1 fibrillar collagen but increased by fibronectin. Expression of Skp-2 protein, but not mRNA, was associated with focal adhesion kinase (FAK) activity and inhibited by overexpression of FAK-related non-kinase and a dominant negative FAK(Y397F) mutant. Furthermore, the inhibition of Skp-2 expression by dominant negative FAK was reversed by the proteasome inhibitor MG-132. Taken together, these data demonstrate that the vascular ECM controls SMC proliferation via FAK-dependent regulation of Skp-2 protein stability.  相似文献   
108.
Major genetic determinants of the metabolic syndrome — a clustering of abdominal obesity, high triglycerides, low HDL cholesterol, high blood pressure and high fasting glucose — remain elusive. We surveyed 207 single-nucleotide polymorphisms in 110 candidate genes among coronary artery disease patients, a population enriched for metabolic abnormalities. The number of abnormalities (0–5) was determined in the 214 male and 91 female patients, and the association with each polymorphism evaluated by means of ordinal regression analysis. Polymorphisms in eight genes, including LDLR, GBE1, IL1R1, TGFB1, IL6, COL5A2, SELE and LIPC, were associated with metabolic syndrome in the whole population (P values ranged from 0.047 to 0.008). Variants in seven additional genes showed significant gene by gender interaction. Among these, separate analyses in men and women revealed a strong association with a silent polymorphism in the low-density lipoprotein receptor-related protein gene, LRPAP1, among females (P=0.0003), but not males (P=0.292). Other genes associated only in females included THBS1, ACAT2, ITGB3, F2 and SELP (P values ranging from 0.032 to 0.002). Only one gene (PRCP) was significantly associated in men alone (P=0.039). Our results propose several new candidate genes for the metabolic syndrome and suggest that the genetic basis of this syndrome may be strongly modified by gender.This work has been reported on behalf of the GeneQuest multicenter study, which involves the following investigators and coordinators: Eric J. Topol (chairperson) (Cleveland Clinic Foundation); David J. Moliterno, Ruth Cannata, Patricia Welsh, Monique Rosenthal (Cleveland Clinic Foundation, Cleveland, Ohio); Spencer B. King, III, William Anderson, Joe Jean Borowski, Kris Anderberg (Emory University Hospital, Atlanta, Georgia); David R. Holmes Jr, Charanjit Rihal, Sharon McIntire-Langworthy (Mayo Clinic, Rochester, Minnesota); William Rogers, Ann Snider (University of Alabama Medical Center, Birmingham, Alabama); L. Kristin Newby, Laura Drew (Duke University Medical Center, Durham, North Carolina); Dean Kereiakes, Eli Roth, Louise Wohlford (The Lindner Center for Clinical Cardiovascular Research, Cincinnati, Ohio); Anthony De Franco, Teresa Schrader (LeBauer Cardiovascular Research Foundation, Greensboro, North Carolina); Phillip Gainey, Sandra Arsenault (St. Joseph Hospital, Savannah, Georgia); Paul Casale, Joann Tuzi (Lancaster Heart Foundation, Lancaster, Pennsylvania); Jeffrey Anderson, Juli Jerman, Rob Pearson Ann Allen (Latter Day Saints Hospital, Salt Lake City, Utah); Sherwyn Schwartz, Sue Beasie (Diabetes and Glandular Associates, San Antonio, Texas); Frank Aguirre, Sandra Aubuchon, Kristin Weisbrod (St Louis University Hospital, St. Louis, Missouri); Jeffrey Carney, Muriel Harris (The Heart Group, Saginaw, Michigan); Jim Bengtson, Mary Adolphson (Michigan Heart and Vascular Institute, Ypsilanti, Michigan); John Rudoff, Sue Williams (Oregon Cardiology Clinic, PC, Portland, Oregon); Jeanette McCarthy, Laura Carleu (Millennium Pharmaceuticals, Cambridge, Massachusetts)  相似文献   
109.
Adenosine exerts a spectrum of energy-preserving actions on the heart negative chronotropic effects. The pathways leading to adenosine formation have remained controversial. In particular, although cytosolic 5'-nucleotidases can catalyze adenosine formation in cardiomyocytes, their contribution to the actions of adenosine has not been documented previously. We recently cloned two closely related AMP-preferring cytosolic 5'-nucleotidases (cN-IA and -IB); the A form predominates in the heart. In this study, we overexpressed pigeon cN-IA in neonatal rat cardiomyocytes using an adenovirus. cN-IA overexpression increased adenosine formation and release into the medium caused by simulated hypoxia and by isoproterenol in the absence and presence of inhibitors of adenosine metabolism. Adenosine release was not affected by an ecto-5'-nucleotidase inhibitor, alpha,beta-methylene-ADP, but was affected by a nucleoside transporter, dipyridamole. The positive chronotropic effect of isoproterenol (130 +/-3 vs. 100 +/-4 beats/min) was inhibited (107 +/-3 vs. 94 +/-3 beats/min) in cells overexpressing cN-IA, and this was reversed by the addition of the adenosine receptor antagonist 8-(p-sulfophenyl)theophilline (120 +/- 3 vs. 90 +/- 4 beats/min). Our results demonstrate that overexpressed cN-IA can be sufficiently active in cardiomyocytes to generate physiologically effective concentrations of adenosine at its receptors.  相似文献   
110.
Haque H  Cutright TJ  Newby BM 《Biofouling》2005,21(2):109-119
The traditional solution for preventing organisms from attaching to submerged surfaces is to apply antifouling coatings or biocides. Based on the varied defence mechanisms exhibited by biofilms, the antifoulant needs to prevent bacterial attachment during the early stages of biofilm formation. The potential of benzoic acid and sodium benzoate (NaB) as antifoulants for deterring freshwater bacterial attachment was evaluated with the antifoulants dispersed in solution or entrapped in silicone coatings. Effectiveness was based on the decrease in microbial attachment, limited toxicity, and minimum alteration of the properties of the coatings. The optimal NaB concentration when dispersed in solution, 700 mg l-1, resulted in a biofilm surface coverage of only 3.34% after four weeks. The model silicone, Sylgard 184, demonstrated a better overall performance than the commercial coating, RTV11. Sylgard 184 containing sodium benzoate had 41-52% less biofilm in comparison to the control Sylgard 184, whereas both the control and NaB-entrapped RTV11 coatings had significant biofilm coverage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号