首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   212篇
  免费   37篇
  2021年   6篇
  2020年   4篇
  2019年   4篇
  2016年   2篇
  2015年   8篇
  2014年   7篇
  2013年   10篇
  2012年   9篇
  2011年   8篇
  2010年   7篇
  2009年   9篇
  2008年   13篇
  2007年   7篇
  2006年   4篇
  2005年   11篇
  2004年   5篇
  2003年   14篇
  2002年   9篇
  2001年   8篇
  2000年   5篇
  1999年   13篇
  1998年   6篇
  1997年   3篇
  1996年   4篇
  1995年   6篇
  1994年   4篇
  1993年   3篇
  1992年   9篇
  1990年   6篇
  1989年   3篇
  1988年   7篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1970年   4篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1965年   1篇
  1949年   1篇
  1915年   1篇
排序方式: 共有249条查询结果,搜索用时 62 毫秒
51.
A continuous coculture of four ruminal bacteria, Megasphaera elsdenii, Selenomonas ruminantium, Streptococcus bovis, and Lactobacillus sp. strain LB17, was used to study the effects of the ionophores monensin and tetronasin on the changes in ruminal microbial ecology that occur during the onset of lactic acidosis. In control incubations, the system simulated the development of lactic acidosis in vivo, with an initial overgrowth of S. bovis when an excess of glucose was added to the fermentor. Lactobacillus sp. strain LB17 subsequently became dominant as pH fell and lactate concentration rose. Both ionophores were able to prevent the accumulation of lactic acid and maintain a healthy non-lactate-producing bacterial population when added at the same time as an excess of glucose. Tetronasin was more potent in this respect than monensin. When tetronasin was added to the culture 24 h after glucose, the proliferation of lactobacilli was reversed and a non-lactate-producing bacterial population developed, with an associated drop in lactate concentration in the fermentor. Rises in culture pH and volatile fatty acid concentrations accompanied these changes. Monensin was unable to suppress the growth of lactobacilli; therefore, in contrast to tetronasin, monensin added 24 h after the addition of glucose failed to reverse the acidosis. Numbers of lactobacilli and lactate concentrations remained high, whereas pH and volatile fatty acid concentrations were low.  相似文献   
52.
The effects of 1-[(E)-2-(2-methyl-4-nitrophenyl)diaz-1-enyl]pyrrolidine-2-carboxy lic acid (LY29) and diphenyliodonium chloride (DIC) on the degradation of protein to ammonia were determined in a mixed rumen microbial population taken from sheep on a grass hay-concentrate diet. Both compounds decreased NH3 production by inhibiting deamination of amino acids. LY29, but not DIC, inhibited growth of the high-activity ammonia-producing species, Clostridium aminophilum and Clostridium sticklandii.  相似文献   
53.
54.
55.
Prediction of nutrient partitioning is a long-standing problem of animal nutrition that has still not been solved. Another substantial problem for nutritional science is how to incorporate genetic differences into nutritional models. These two problems are linked as their biological basis lies in the relative priorities of different life functions (growth, reproduction, health, etc.) and how they change both through time and in response to genetic selection. This paper presents recent developments in describing this biological basis and evidence in support of the concepts involved as they relate to nutrient partitioning. There is ample evidence that at different stages of the reproductive cycle various metabolic pathways, such as lipolysis and lipogenesis, are up or down regulated. The net result of such changes is that nutrients are channelled to differing extents to different organs, life functions and end-products. This occurs not as a homeostatic function of changing nutritional environment but rather as a homeorhetic function caused by the changing expression of genes for processes such as milk production through time. In other words, the animal has genetic drives and there is an aspect of nutrient partitioning that is genetically driven. Evidence for genetic drives other than milk production is available and is discussed. Genetic drives for other life functions than just milk imply that nutrient partitioning will change through lactation and according to genotype - i.e. it cannot be predicted from feed properties alone. Progress in describing genetic drives and homeorhetic controls is reviewed. There is currently a lack of good genetic measures of physiological parameters. The unprecedented level of detail and amounts of data generated by the advent of microarray biotechnology and the fields of genomics, proteomics, etc. should in the long-term provide the necessary information to make the link between genetic drives and metabolism. However, gene expression, protein synthesis etc, have all been shown to be environmentally sensitive. Thus, a major challenge in realising the potential afforded by this new technology is to be able to be able to distinguish genetically driven and environmentally driven effects on expression. To do this we need a better understanding of the basis for the interactions between genotypes and environments. The biological limitations of traditional evaluation of genotype × environment interactions and plasticity are discussed and the benefits of considering these in terms of trade-offs between life functions is put forward. Trade-offs place partitioning explicitly at the centre of the resource allocation problem and allow consideration of the effects of management and selection on multiple traits and on nutrient partitioning.  相似文献   
56.
AIMS: To investigate the mode of action of a blend of essential oil compounds on the colonization of starch-rich substrates by rumen bacteria. METHODS AND RESULTS: Starch-rich substrates were incubated, in nylon bags, in the rumen of sheep organized in a 4 x 4 latin square design and receiving a 60:40 silage : concentrate diet. The concentrate was either high or low in crude protein, and the diet was supplemented or not with a commercial blend of essential oil compounds (110 mg per day). The total genomic DNA was extracted from the residues in the bags. The total eubacterial DNA was quantified by real-time PCR and the proportion of Ruminobacter amylophilus, Streptococcus bovis and Prevotella bryantii was determined. Neither the supplementation with essential oil compounds nor the amount of crude protein affected the colonization of the substrates by the bacteria quantified. However, colonization was significantly affected by the substrate colonized. CONCLUSIONS: The effect of essential oils on the colonization of starch-rich substrates is not mediated through the selective inhibition of R. amylophilus. SIGNIFICANCE AND IMPACT OF THE STUDY: This study enhances our understanding of the colonization of starch-rich substrates, as well as of the mode of action of the essential oils as rumen manipulating agents.  相似文献   
57.
We have coupled fluorescence in situ hybridization (FISH) with Raman microscopy for simultaneous cultivation-independent identification and determination of (13)C incorporation into microbial cells. Highly resolved Raman confocal spectra were generated for individual cells which were grown in minimal medium where the ratio of (13)C to (12)C content of the sole carbon source was incrementally varied. Cells which were (13)C-labelled through anabolic incorporation of the isotope exhibited key red-shifted spectral peaks, the calculated 'red shift ratio' (RSR) being highly correlated with the (13)C-content of the cells. Subsequently, Raman instrumentation and FISH protocols were optimized to allow combined epifluorescence and Raman imaging of Fluos, Cy3 and Cy5-labelled microbial populations at the single cell level. Cellular (13)C-content determinations exhibited good congruence between fresh cells and FISH hybridized cells indicating that spectral peaks, including phenylalanine resonance, which were used to determine (13)C-labelling, were preserved during fixation and hybridization. In order to demonstrate the suitability of this technology for structure-function analyses in complex microbial communities, Raman-FISH was deployed to show the importance of Pseudomonas populations during naphthalene degradation in groundwater microcosms. Raman-FISH extends and complements current technologies such as FISH-microautoradiography and stable isotope probing in that it can be applied at the resolution of single cells in complex communities, is quantitative if suitable calibrations are performed, can be used with stable isotopes and has analysis times of typically 1 min per cell.  相似文献   
58.
The Cysteine Repeat Modular Proteins (PCRMP1-4) of Plasmodium, are encoded by a small gene family that is conserved in malaria and other Apicomplexan parasites. They are very large, predicted surface proteins with multipass transmembrane domains containing motifs that are conserved within families of cysteine-rich, predicted surface proteins in a range of unicellular eukaryotes, and a unique combination of protein-binding motifs, including a >100 kDa cysteine-rich modular region, an epidermal growth factor-like domain and a Kringle domain. PCRMP1 and 2 are expressed in life cycle stages in both the mosquito and vertebrate. They colocalize with PfEMP1 (P. falciparum Erythrocyte Membrane Antigen-1) during its export from P. falciparum blood-stage parasites and are exposed on the surface of haemolymph- and salivary gland-sporozoites in the mosquito, consistent with a role in host tissue targeting and invasion. Gene disruption of pcrmp1 and 2 in the rodent malaria model, P. berghei, demonstrated that both are essential for transmission of the parasite from the mosquito to the mouse and has established their discrete and important roles in sporozoite targeting to the mosquito salivary gland. The unprecedented expression pattern and structural features of the PCRMPs thus suggest a variety of roles mediating host-parasite interactions throughout the parasite life cycle.  相似文献   
59.
Lotic ecosystems such as rivers and streams are unique in that they represent a continuum of both space and time during the transition from headwaters to the river mouth. As microbes have very different controls over their ecology, distribution and dispersion compared with macrobiota, we wished to explore biogeographical patterns within a river catchment and uncover the major drivers structuring bacterioplankton communities. Water samples collected across the River Thames Basin, UK, covering the transition from headwater tributaries to the lower reaches of the main river channel were characterised using 16S rRNA gene pyrosequencing. This approach revealed an ecological succession in the bacterial community composition along the river continuum, moving from a community dominated by Bacteroidetes in the headwaters to Actinobacteria-dominated downstream. Location of the sampling point in the river network (measured as the cumulative water channel distance upstream) was found to be the most predictive spatial feature; inferring that ecological processes pertaining to temporal community succession are of prime importance in driving the assemblages of riverine bacterioplankton communities. A decrease in bacterial activity rates and an increase in the abundance of low nucleic acid bacteria relative to high nucleic acid bacteria were found to correspond with these downstream changes in community structure, suggesting corresponding functional changes. Our findings show that bacterial communities across the Thames basin exhibit an ecological succession along the river continuum, and that this is primarily driven by water residence time rather than the physico-chemical status of the river.  相似文献   
60.
Within this study, we investigated whether the polyunsaturated fatty acids (PUFA)-rich nature of rumen protozoa is a consequence of ingestion of PUFA-rich chloroplasts. Four Hereford × Friesian steers were offered hay [low 18:3 (n-3) and low chlorophyll concentration] followed by freshly cut perennial ryegrass [high 18:3 (n-3) and high chlorophyll concentration] for 16 days. On the 14th and 16th days, rumen protozoa as well as attached and planktonic bacteria were fractionated 1 h before (−1 h), 2 and 6 h postfeeding, and their fatty acid concentrations determined. Protozoa fractionated from fresh grass-fed steers were richer ( P <0.05) in PUFA, except conjugated linoleic acid, for all time points compared with those from hay-fed steers. Protozoal density was higher ( P <0.05) for grass compared with hay. Entodinomorphid abundance was 3.4 times higher on fresh grass ( P <0.01) compared with hay. Confocal microscopy and transmission electron microscopy confirmed that Epidinium spp. were commonly saturated with intracellular cytoplasmic chloroplasts. These data suggest that engulfment of chloroplasts is a major contributor to the high 18:3 (n-3) concentration of protozoa.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号