首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   902篇
  免费   61篇
  国内免费   32篇
  2022年   12篇
  2021年   15篇
  2019年   11篇
  2018年   13篇
  2017年   8篇
  2016年   17篇
  2015年   26篇
  2014年   25篇
  2013年   27篇
  2012年   47篇
  2011年   53篇
  2010年   30篇
  2009年   26篇
  2008年   35篇
  2007年   34篇
  2006年   40篇
  2005年   28篇
  2004年   32篇
  2003年   28篇
  2002年   34篇
  2001年   19篇
  2000年   24篇
  1999年   19篇
  1998年   9篇
  1996年   9篇
  1993年   9篇
  1992年   14篇
  1991年   8篇
  1990年   13篇
  1989年   12篇
  1988年   14篇
  1987年   8篇
  1986年   6篇
  1985年   8篇
  1984年   15篇
  1983年   9篇
  1982年   19篇
  1981年   21篇
  1980年   8篇
  1979年   8篇
  1978年   8篇
  1977年   8篇
  1976年   9篇
  1975年   8篇
  1974年   10篇
  1973年   13篇
  1972年   14篇
  1971年   11篇
  1969年   11篇
  1966年   7篇
排序方式: 共有995条查询结果,搜索用时 31 毫秒
81.
Previous studies suggested that women synthesise docosahexaenoic acid (DHA) more efficiently from their precursors than men. This study investigated the relationship between diet, platelet phospholipids fatty acids and gender. Dietary intake and platelet phosphatidyl-choline (PC) and phosphatidylethanolamine (PE) fatty acids were determined in Caucasian 40 men and 34 women. Absolute and %energy intakes of arachidonic acid (AA), eicosapentaenoic acid (EPA), and DHA, and the ratios of total n-6/n-3 PUFA and linoleic/alpha-linolenic acids did not differ between the sexes. However, women had higher DHA in PC (1.19 vs 1.05 wt%, p<0.05) and PE (3.62 vs 3.21 wt%, p<0.05) than men. Also EPA (1.10 vs 0.93 wt%, p<0.05) was higher in women's PE. Conversely, men had elevated AA and total n-6 fatty acids in PC. The higher platelet DHA levels and lower platelet AA/EPA and AA/DHA ratios in women of child-bearing age compared with men, may lead to less platelet aggregation and vaso-occlusion.  相似文献   
82.
Biofilms are sessile microbial communities that cause serious chronic infections with high morbidity and mortality. In order to develop more effective approaches for biofilm control, a series of linear cationic antimicrobial peptides (AMPs) with various arginine (Arg or R) and tryptophan (Trp or W) repeats [(RW)n-NH2, where n = 2, 3, or 4] were rigorously compared to correlate their structures with antimicrobial activities affecting the planktonic growth and biofilm formation of Escherichia coli. The chain length of AMPs appears to be important for inhibition of bacterial planktonic growth, since the hexameric and octameric peptides significantly inhibited E. coli growth, while tetrameric peptide did not cause noticeable inhibition. In addition, all AMPs except the tetrameric peptide significantly reduced E. coli biofilm surface coverage and the viability of biofilm cells, when added at inoculation. In addition to inhibition of biofilm formation, significant killing of biofilm cells was observed after a 3-hour treatment of preformed biofilms with hexameric peptide. Interestingly, treatment with the octameric peptide caused significant biofilm dispersion without apparent killing of biofilm cells that remained on the surface; e.g., the surface coverage was reduced by 91.5 ± 3.5% by 200 μM octameric peptide. The detached biofilm cells, however, were effectively killed by this peptide. Overall, these results suggest that hexameric and octameric peptides are potent inhibitors of both bacterial planktonic growth and biofilm formation, while the octameric peptide can also disperse existing biofilms and kill the detached cells. These results are helpful for designing novel biofilm inhibitors and developing more effective therapeutic methods.Antimicrobial peptides (AMPs) are promising alternatives to traditional antibiotics (5). Native AMPs are part of the host defense in organisms ranging from bacteria to insects, plants, and animals (14). They are capable of eliminating a broad spectrum of microorganisms, including viruses, bacteria, and fungi (4, 14). Compared with widespread antibiotic resistance (38), resistance to AMPs is rare, possibly because AMPs directly target cell membranes that are essential to microbes (14, 29). In addition, no cross-resistance has been observed in clinic due to the diversity of peptide sequences (42). Thus, native and synthetic AMPs offer potential alternatives to antibiotics for treating drug-resistant infections (3, 26, 27).In mammalian innate immune systems, some AMPs are produced constitutively, while others are inducible within hours after detection of invading microorganisms (4, 13). Although the detailed mechanism of AMPs'' activities remains elusive (5), AMPs are known to disrupt cell membranes of microbes, interfere with metabolism, and/or target cytoplasmic components (41). Most known AMPs are cationic and amphiphilic (29). It is hypothesized that the initial interaction occurs via an electrostatic attraction between the AMP molecule and microbial membrane. Cationic AMPs can cover bacterial membranes, disrupt the membrane potential, create pores across the membrane, and consequently cause the leak of cell contents and cell death (27, 41). AMPs are relatively selective in targeting microbes rather than mammalian cells, most likely because of the fundamental differences between microbial and host membranes (41), e.g., a higher abundance of negatively charged phospholipids and an absence of cholesterol in microbial membranes.Known AMPs vary dramatically in sequence, size (from 12 to 50 amino acids), and structure (α-helices or β-sheets) (23). However, most AMPs have two types of side chains with relatively conservative sequences: positively charged basic residues, containing arginine (R), lysine (K), and/or histidine (H), that presumably mediate the interaction with the negatively charged microbial membrane, and bulky hydrophobic residues, rich in tryptophan (W), proline (P), and/or phenylalanine (F), that facilitate permeabilization and membrane disruption (26).Although AMPs are promising agents for antimicrobial therapies (15), only a few have made it to clinical trials and applications, with varied success (15, 42). There are several issues that need further development. First, the MICs of AMPs are relatively high compared to those of conventional antibiotics. Recent studies suggest that the peptide/lipid (P/L) ratio needs to be higher than a threshold to allow the AMPs to be oriented perpendicular to the membrane so that pores can be created to kill bacteria (22, 30). Thus, an optimization of peptide structure and size may improve their antimicrobial activities. In addition to the high MICs, the wide application of AMPs is also hindered by their high manufacturing costs and the cytotoxicity of some AMPs.Given the limit of currently available AMPs, it is important to develop more effective AMPs with reduced manufacturing cost and enhanced activity (17, 26, 28, 39). Strøm et al. (39) chemically synthesized a series of short cationic AMPs containing repeating R and W residues in order to identify the minimal pharmacophore with high antimicrobial activities. The data suggest that tetrapeptides or capped tripeptides are effective and there is no correlation between the order of amino acids and antimicrobial activity. Liu et al. (26) analyzed the effects of chain length on the activities of AMPs with repeating pharmacophore sequences (RW)n-NH2 (n = 1, 2, 3, 4, or 5). The tests of antimicrobial activities and the hemolysis of red blood cells suggest that (RW)3-NH2 has the optimal chain length. Although longer chains are more potent antimicrobials, they can stimulate hemolysis.Most of the AMP studies to date are focused on planktonic bacteria. However, the majority of pathogenic bacteria tend to adhere to surfaces and form sessile microbial communities with highly hydrated structures of secreted polysaccharide matrix, collectively known as biofilms (9). Biofilms can tolerate up to 1,000 times more antibiotics and disinfectants than their planktonic counterparts (2, 7, 8). For example, Folkesson et al. (12) reported that biofilm formation of E. coli K-12 increases its tolerance to polymyxin E, a polypeptide antibiotic that kills Gram-negative bacteria by disrupting membranes (34, 40). Since biofilms are involved in 80% of human bacterial infections (1), it is necessary to study biofilm inhibition and dispersion by AMPs.In this study, a series of linear peptides (RW)n-NH2 (where n = 2, 3, or 4) were studied for the effects of their activities on planktonic cells and biofilms of E. coli to understand the structural effects on the antimicrobial activities of AMPs. We chose E. coli RP437 in this study because it is one of the model strains for biofilm research and allows us to compare the data with those of our previous studies (6, 16, 19, 20).  相似文献   
83.

Introduction

Somatostatin, released from pancreatic delta cells, is a potent paracrine inhibitor of insulin and glucagon secretion. Islet cellular interactions and glucose homeostasis are essential to maintain normal patterns of insulin secretion. However, the importance of cell-to-cell communication and cellular environment in the regulation of somatostatin release remains unclear.

Methods

This study employed the somatostatin-secreting TGP52 cell line maintained in DMEM:F12 (17.5 mM glucose) or DMEM (25 mM glucose) culture media. The effect of pseudoislet formation and culture medium on somatostatin content and release in response to a variety of stimuli was measured by somatostatin EIA. In addition, the effect of pseudoislet formation on cellular viability (MTT and LDH assays) and proliferation (BrdU ELISA) was determined.

Results

TGP52 cells readily formed pseudoislets and showed enhanced functionality in three-dimensional form with increased E-cadherin expression irrespective of the culture environment used. However, culture in DMEM decreased cellular somatostatin content (P < 0.01) and increased somatostatin secretion in response to a variety of stimuli including arginine, calcium and PMA (P < 0.001) when compared with cells grown in DMEM:F12. Configuration of TGP52 cells as pseudoislets reduced the proliferative rate and increased cellular cytotoxicity irrespective of culture medium used.

Conclusions

Somatostatin secretion is greatly facilitated by cell-to-cell interactions and E-cadherin expression. Cellular environment and extracellular glucose also significantly influence the function of delta cells.  相似文献   
84.

Background  

The present study aimed to evaluate the efficacy of the hyaluronic acid (HA) binding assay in the selection of motile spermatozoa with normal morphology at high magnification (8400x).  相似文献   
85.
The African ice rat Otomys sloggetti robertsi is a small rodent confined to cold, alpine habitats. It does not hibernate and is poorly adapted physiologically to low temperatures. We predicted and showed that its fur is denser than its congeners from warmer habitats, but it had shorter fur than expected. Dense fur would provide insulation and piloerection of short fur would facilitate heat gain from solar radiation during sun basking. These traits, in addition to other behavioural and morphological traits, would assist O. s. robertsi in meeting its thermoregulatory requirements in response to low temperatures.  相似文献   
86.
Homocysteine can be converted to its reactive thioester, homocysteine thiolactone. Cytotoxic properties of these amino thiols have been attributed to protein homocysteinylation, increased oxidative stress, DNA damage and apoptosis. This study used pancreatic BRIN-BD11 beta-cells to examine functional defects caused by acute and long-term exposure to homocysteine thiolactone in comparison with homocysteine. Acute and long-term exposure to both agents caused concentration-dependent inhibitions of glucose-induced insulin secretion while impairing the insulin-secretory responses to alanine, KCl, elevated Ca(2+), forskolin and PMA. Acute exposures also caused significant reduction in the amplitude of KCl-induced membrane depolarisation but no effects on changes of intracellular Ca(2+) induced by alanine or KCl. Cellular insulin content and DNA damage were not altered following culture, however, there were early signs of apoptosis consistent with impaired cellular integrity. In conclusion, exposure to homocysteine thiolactone, like homocysteine, induced beta-cell dysfunction and demise by mechanisms independent of changes in membrane potential and [Ca(2+)](i).  相似文献   
87.
The hydrophobic core of the GCN4 leucine-zipper dimerization domain is formed by a parallel helical association between nonpolar side chains at the a and d positions of the heptad repeat. Here we report a self-assembling coiled-coil array formed by the GCN4-pAe peptide that differs from the wild-type GCN4 leucine zipper by alanine substitutions at three charged e positions. GCN4-pAe is incompletely folded in normal solution conditions yet self-assembles into an antiparallel tetraplex in crystals by formation of unanticipated hydrophobic seams linking the last two heptads of two parallel double-stranded coiled coils. The GCN4-pAe tetramers in the lattice associate laterally through the identical interactions to those in the intramolecular dimer-dimer interface. The van der Waals packing interaction in the solid state controls extended supramolecular assembly of the protein, providing an unusual atomic scale view of a mesostructure.  相似文献   
88.
89.
Peripheral arterial disease (PAD) is an atherosclerotic disease. Evidence suggests that atherosclerosis is an inflammatory condition and long chain n-3 fatty acids, found in oily fish and fish oils, have been shown to reduce inflammation. Genetic and lifestyle factors such as body mass index (BMI) also influence inflammation. In this study we have examined the effect of fish oil in patients with claudication secondary to PAD. Fish oil supplementation, providing 1g EPA and 0.7 g DHA per day for 12 weeks, increased walking distance on a treadmill set at 3.2 km/h with a 7% incline. Walking distance to first pain increased from 76.2+/-8.5 m before fish oil to 140.6+/-25.5 m after fish oil (mean+/-SEM, p=0.004) and total distance walked increased from 160.0+/-21.5 m before fish oil to 242.1+/-34.5 m after fish oil (p=0.002). Fish oil supplementation also improved ankle brachial pressure index (ABPI) from 0.599+/-0.017 before fish oil to 0.776+/-0.030 after fish oil (p<0.001). The increase in walking distance was dependent on both BMI and genotype for single nucleotide polymorphisms in the genes encoding the pro-inflammatory cytokines tumour necrosis factor-alpha and interleukin (IL)-1beta and the anti-inflammatory cytokine IL-10 (detected using amplification refractory mutation system polymerase chain reaction). Neither BMI nor any of the genotypes examined affected the ability of fish oil to increase ABPI. The mechanisms by which fish oil affects walking distance and ABPI do not appear to be the same.  相似文献   
90.
Non-steroidal anti-inflammatory drugs (NSAIDs), including selective cyclo-oxygenase-2 (COX-2) inhibitors, cause upper gastrointestinal (GI) symptoms that are relieved by treatment with esomeprazole. We assessed esomeprazole for maintaining long-term relief of such symptoms. Six hundred and ten patients with a chronic condition requiring anti-inflammatory therapy who achieved relief of NSAID-associated symptoms of pain, discomfort, or burning in the upper abdomen during two previous studies were enrolled and randomly assigned into two identical, multicentre, parallel-group, placebo-controlled studies of esomeprazole 20 mg or 40 mg treatment (NASA2 [Nexium Anti-inflammatory Symptom Amelioration] and SPACE2 [Symptom Prevention by Acid Control with Esomeprazole] studies; ClinicalTrials.gov identifiers NCT00241514 and NCT00241553, respectively) performed at various rheumatology, gastroenterology, and primary care clinics. Four hundred and twenty-six patients completed the 6-month treatment period. The primary measure was the proportion of patients with relapse of upper GI symptoms, recorded in daily diary cards, after 6 months. Relapse was defined as moderate-to-severe upper GI symptoms (a score of more than or equal to 3 on a 7-grade scale) for 3 days or more in any 7-day period. Esomeprazole was significantly more effective than placebo in maintaining relief of upper GI symptoms throughout 6 months of treatment. Life-table estimates (95% confidence intervals) of the proportion of patients with relapse at 6 months (pooled population) were placebo, 39.1% (32.2% to 46.0%); esomeprazole 20 mg, 29.3% (22.3% to 36.2%) (p = 0.006 versus placebo); and esomeprazole 40 mg, 26.1% (19.4% to 32.9%) (p = 0.001 versus placebo). Patients on either non-selective NSAIDs or selective COX-2 inhibitors appeared to benefit. The frequency of adverse events was similar in the three groups. Esomeprazole maintains relief of NSAID-associated upper GI symptoms in patients taking continuous NSAIDs, including selective COX-2 inhibitors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号