首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   10篇
  151篇
  2022年   7篇
  2021年   2篇
  2020年   5篇
  2019年   6篇
  2018年   5篇
  2017年   5篇
  2016年   6篇
  2015年   11篇
  2014年   12篇
  2013年   11篇
  2012年   15篇
  2011年   11篇
  2010年   4篇
  2009年   13篇
  2008年   9篇
  2007年   9篇
  2006年   5篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2000年   4篇
  1997年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1985年   1篇
  1983年   1篇
  1973年   1篇
排序方式: 共有151条查询结果,搜索用时 15 毫秒
101.
Horseradish peroxidase (HRP) is a highly specific enzyme with great potential for use in the decolorization of synthetic dyes. A comprehensive study of HRP immobilization using various techniques such as adsorption and covalent immobilization on the novel carrier Purolite® A109 with a special focus on enzymatic decolorization and toxicity of artificially colored wastewater. The immobilized preparations with an activity of 156.21 ± 1.41 U g−1 and 85.71 ± 1.62 U g−1 after the HRP adsorption and covalent immobilization, respectively, were obtained. Stability and reusability of the immobilized preparations were also evaluated. A noteworthy decolorization level (~90%) with immobilized HRP was achieved. Phytotoxicity testing using Mung bean seeds and acute toxicity assay with Artemia salina has confirmed the applicability of the obtained immobilized preparation in industrial wastewater plants for the treatment of colored wastewater.  相似文献   
102.
It is well known that variation in the concentration of estrogens affects insulin action. In this study we examine the impact of estradiol (E2) on insulin signaling in the rat heart. Ovariectomized female rats were treated with E2 6 h prior to analysis of basal protein and mRNA content of insulin signaling molecules, and additionally with insulin 30 min before the experiment to delineate E2 effects on phosphorylations and molecular associations relevant for insulin signaling. The results show that E2 decreased insulin receptor (IR) tyrosine phosphorylation, while it did not alter IR protein and mRNA content. E2 administration did not change IR substrate 1 (IRS‐1) protein content and tyrosine phosphorylation, while decreased mRNA content and increased its association with the p85 subunit of phosphatidylinositol 3‐kinase (PI3K). E2 decreased protein and mRNA content of IR substrate 2 (IRS‐2), while did not change IRS‐2 tyrosine phosphorylation and IRS‐2 association with p85. The increase of IRS‐1/p85 is accompanied by increase of p85 protein and mRNA levels, and by stimulation of protein kinase B (Akt) Ser473 phosphorylation. In contrast, Akt protein and mRNA content were not changed. In summary, although in some aspects cardiac insulin signaling is obviously improved by E2 treatment (increase of p85 mRNA and protein levels, enhancement of IRS‐1/p85 association and Ser473Akt phosphorylation), the observed decrease of IR tyrosine phosphorylation, IRS‐2 protein content, and IRSs mRNA contents, suggest very complex interplay of beneficial and suppressive effects of E2, both genomic and non‐genomic, in regulation of heart insulin signaling. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
103.
The Informational Spectrum Method (ISM) is the tool for the in silico analysis of proteins which interprets protein sequence linear information using signal analyses methods. In this paper the ISM was employed to characterize the products of genetic variants of tumor suppressor gene p53 and its natural binding regulator protein Mdm2. Based on this we propose the criterion for identification of missense mutations that have impact on the p53-Mdm2 feedback loop. The efficiency of the proposed criterion was confirmed by the ISM analyses of p53 mutants reported in: (i) healthy individuals, (ii) germline mutations database and (iii) somatic mutations database.  相似文献   
104.
Hygromycin (hyg) at low doses (0.5–1.0 mg l?1) promoted somatic embryogenesis from apical sections of spinach lateral roots. The highest promoting effect on both the frequency of regeneration and the mean number of somatic embryos (SE) per explant was achieved at 0.5 mg l?1 hyg. With increasing the concentration of hyg to 1 mg l?1, the regeneration frequency decreased, while the mean SE number remained significantly higher than in control (hyg-free medium). Complete inhibition of SE regeneration started at 7.5 mg l?1 hyg. Moreover, hyg efficiently promoted the process of secondary somatic embryogenesis. Compared to control, a 2.75-fold increase in the secondary somatic embryo (SSE) mean number was obtained at 0.5 mg l?1 hyg, and the increment was still discernible at 1.0 and 2.5 mg l?1 hyg. Both primary SE and SSE explants became completely necrotic at 12.5 mg l?1 hyg. Since attempts with direct selection at 20 mg l?1 hyg proved unsuccessful, the results obtained in this study suggest that a stepwise selection procedure is suitable, starting with selection at 0.5 mg l?1 hyg, to exploit the promoting effect of low hyg doses on SE regeneration from transformed cells, then gradually increasing the hyg concentration to 20 mg l?1 for final selection. Complete SE and SSE explant mortality at hyg above 12.5 mg l?1 guarantees a low possibility of escape during the selection process. This study will be useful for increasing the efficiency of transgenic plant regeneration following genetic transformation in spinach.  相似文献   
105.
106.
The cellular defense system against harmful levels of reactive oxygen species consists of antioxidant enzymatic activities and small nonenzymatic molecules. l-Ergothioneine has long been recognized as a potent and stable low-molecular-weight antioxidant that humans consume with diet and that accumulates in cells normally subjected to high levels of oxidative stress. As l-ergothioneine is plasma membrane-impermeative, its protective function is restricted to cells that express the l-ergothioneine-specific receptor/transporter OCTN1. Here we report for the first time that both as resident skin cells and in culture, epidermal keratinocytes synthesize OCTN1, which enables them to internalize and accumulate l-ergothioneine. This accumulation confers upon the cells an increased antioxidant potential. Consequently, it reduces the levels of reactive oxygen species and DNA, protein, and lipid damage in keratinocytes subjected to solar-simulating UV oxidative stress. Our results suggest that l-ergothioneine not only prevents oxidative damage but also may enable DNA repair in the UV-irradiated cells. The diminished oxidative damage to cellular constituents limits the apoptotic response and results in increased cell viability. The cells' ability to take up, accumulate, and utilize the potent antioxidant l-ergothioneine positions this naturally occurring amino acid and its receptor/transporter as an integral part of the antioxidative defense system of the skin.  相似文献   
107.
Two structurally distinct series of SCD (Δ9 desaturase) inhibitors (1 and 2) have been previously reported by our group. In the present work, we merged the structural features of the two series. This led to the discovery of compound 5b (CVT-12,012) which is highly potent in a human cell-based (HEPG2) SCD assay (IC50 = 6 nM). This compound has 78% oral bioavailability in rats and is preferentially distributed into liver (76 times vs plasma) with relatively low brain penetration. In a five-day study (sucrose fed rats) compound 5b significantly reduced SCD activity in a dose-dependent manner as determined by GC analysis of fatty acid composition in plasma and liver, and significantly reduced liver triglycerides versus the control group (~50%).  相似文献   
108.

Background

Mesothelin is a 40 kDa protein present on the surface of normal mesothelial cells and overexpressed in many human tumours, including mesothelioma and ovarian and pancreatic adenocarcinoma. It forms a strong and specific complex with MUC16, which is also highly expressed on the surface of mesothelioma and ovarian cancer cells. This binding has been suggested to be the basis of ovarian cancer metastasis. Knowledge of the structure of this protein will be useful, for example, in building a structural model of the MUC16-mesothelin complex. Mesothelin is produced as a precursor, which is cleaved by furin to produce the N-terminal half, which is called the megakaryocyte potentiating factor (MPF), and the C-terminal half, which is mesothelin. Little is known about the function of mesothelin and there is no information on its possible three-dimensional structure. Mesothelin has been reported to be homologous to the deafness-related inner ear proteins otoancorin and stereocilin, for neither of which the three-dimensional structure is known.

Results

The BLAST and PSI-BLAST searches confirmed that mesothelin and mesothelin precursor proteins are remotely homologous to stereocilin and otoancorin and more closely homologous to the hypothetical protein MPFL (MPF-like). Secondary structure prediction servers predicted a predominantly helical structure for both mesothelin and mesothelin precursor proteins and also for stereocilin and otoancorin. Three-dimensional structure prediction servers INHUB and I-TASSER produced structural models for mesothelin, which consisted of superhelical structures with ARM-type repeats in conformity with the secondary structure predictions. Similar ARM-type superhelical repeat structures were predicted by 3D-PSSM server for mesothelin precursor and for stereocilin and otoancorin proteins.

Conclusion

The mesothelin superfamily of proteins, which includes mesothelin, mesothelin precursor, megakaryocyte potentiating factor, MPFL, stereocilin and otoancorin, are predicted to have superhelical structures with ARM-type repeats. We suggest that all of these function as superhelical lectins to bind the carbohydrate moieties of extracellular glycoproteins.  相似文献   
109.
Here we demonstrated that the ‘loss of function’ of not‐rearranged c‐ABL in chronic myeloid leukemia (CML) is promoted by its cytoplasmic compartmentalization bound to 14‐3‐3 sigma scaffolding protein. In particular, constitutive tyrosine kinase (TK) activity of p210 BCR‐ABL blocks c‐Jun N‐terminal kinase (JNK) phosphorylation leading to 14‐3‐3 sigma phosphorylation at a critical residue (Ser186) for c‐ABL binding in response to DNA damage. Moreover, it is associated with 14‐3‐3 sigma over‐expression arising from epigenetic mechanisms (promoter hyper‐acetylation). Accordingly, p210 BCR‐ABL TK inhibition by the TK inhibitor Imatinib mesylate (IM) evokes multiple events, including JNK phosphorylation at Thr183, p38 mitogen‐activated protein kinase (MAPK) phosphorylation at Thr180, c‐ABL de‐phosphorylation at Ser residues involved in 14‐3‐3 binding and reduction of 14‐3‐3 sigma expression, that let c‐ABL release from 14‐3‐3 sigma and nuclear import, and address BCR‐ABL‐expressing cells towards apoptotic death. Informational spectrum method (ISM), a virtual spectroscopy method for analysis of protein interactions based on their structure, and mathematical filtering in cross spectrum (CS) analysis identified 14‐3‐3 sigma/c‐ABL binding sites. Further investigation on CS profiles of c‐ABL‐ and p210 BCR‐ABL‐containing complexes revealed the mechanism likely involved 14‐3‐3 precluded phosphorylation in CML cells.  相似文献   
110.
Although cryosurgery is attaining increasing clinical acceptance, our understanding of the mechanisms of cryogenic cell destruction remains incomplete. While it is generally accepted that cryoinjured cells die by necrosis, the involvement of apoptosis was recently shown. Our studies of liver cell death by cryogenic temperature revealed the activation of endonuclease p23 and its de novo association with the nuclear matrix. This finding is strongly suggestive of a programmed-type of cell death process. The presumed order underlying cryonecrotic cell death is addressed here by examining the mechanism of p23 activation. To that end, nuclear proteins that were prepared from fresh liver, which is devoid of p23 activity, were incubated with protein fractions isolated from liver exposed to freezing/thawing that possessed a presumed p23 activation factor. We observed that the activation of p23 was the result of a proteolytic event in which cathepsin D played a major role. Different patterns of proteolytic cleavage of nuclear proteins after in vitro incubation of nuclei and in samples isolated from frozen/thawed liver were observed. Although both processes induced p23 activation, the incubation experiments generated proteolytic hallmarks of apoptosis, while freezing/thawing of whole liver resulted in typical necrotic PARP-1 cleavage products and intact lamin B. As an explanation we offer a hypothesis that after freezing, cells possess the potential to die through necrotic as well as apoptotic mechanisms, based on our finding that the cytosol of cells exposed to cryogenic temperatures contains both necrotic and apoptotic executors of cell death.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号