首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   2篇
  2018年   1篇
  2013年   4篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2007年   2篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
排序方式: 共有18条查询结果,搜索用时 328 毫秒
11.
In Drosophila, neurosecretory cells that release peptide hormones play a prominent role in the regulation of development, growth, metabolism, and reproduction. Several types of peptidergic neurosecretory cells have been identified in the brain of Drosophila with release sites in the corpora cardiaca and anterior aorta. We show here that in adult flies the products of three neuropeptide precursors are colocalized in five pairs of large protocerebral neurosecretory cells in two clusters (designated ipc-1 and ipc-2a): Drosophila tachykinin (DTK), short neuropeptide F (sNPF) and ion transport peptide (ITP). These peptides were detected by immunocytochemistry in combination with GFP expression driven by the enhancer trap Gal4 lines c929 and Kurs-6, both of which are expressed in ipc-1 and 2a cells. This mix of colocalized peptides with seemingly unrelated functions is intriguing and prompted us to initiate analysis of the function of the ten neurosecretory cells. We investigated the role of peptide signaling from large ipc-1 and 2a cells in stress responses by monitoring the effect of starvation and desiccation in flies with levels of DTK or sNPF diminished by RNA interference. Using the Gal4-UAS system we targeted the peptide knockdown specifically to ipc-1 and 2a cells with the c929 and Kurs-6 drivers. Flies with reduced DTK or sNPF levels in these cells displayed decreased survival time at desiccation and starvation, as well as increased water loss at desiccation. Our data suggest that homeostasis during metabolic stress requires intact peptide signaling by ipc-1 and 2a neurosecretory cells.  相似文献   
12.
Ellagic acid (EA) is a natural polyphenolic compound. Although, modulator effects of EA on copper (Cu) and zinc (Zn) levels in some liver diseases have been reported in experimental animals, its effects in obstructive jaundice (OJ) has not been clarified. We aimed to evaluate potential effects of EA on Cu and Zn levels in liver and serum of cholestatic rats. Forty Wistar albino rats were equally divided into four groups. First group was used as controls. Second group received EA (60 mg−1 kg−1 day−1) for 8 days. Third was OJ group, and fourth group was OJ plus EA group. After 8 days, blood and liver samples were obtained. Higher serum and liver Cu and lower serum and liver Zn levels were found in OJ group (p < 0.05) compared with other groups. However, these differences reached to significant levels for Cu in serum and for Zn in lever. Higher serum copper levels were decreased, and lower liver Zn levels were increased by EA treatment in cholestatic rats (p < 0.05). Also, higher Cu/Zn ratio in OJ group was decreased by EA treatment both in liver (p < 0.05) and in serum (p < 0.05). Significantly higher serum bilirubin, alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase values were found in OJ and OJ + EA groups compared with the control and EA groups (p < 0.05). In conclusion, result of the current study indicated that ellagic acid has modulator effects on Cu and Zn levels in liver and serum of cholestatic rats.  相似文献   
13.
Pore-forming toxins (PFTs) are soluble proteins that can oligomerize on the cell membrane and induce cell death by membrane insertion. PFT oligomers sometimes form hexagonal close-packed (hcp) structures on the membrane. Here, we show the assembling of the sphingomyelin (SM)-binding PFT, lysenin, into an hcp structure after oligomerization on SM/cholesterol membrane. This process was monitored by high-speed atomic force microscopy. Hcp assembly was driven by reorganization of lysenin oligomers such as association/dissociation and rapid diffusion along the membrane. Besides rapid association/dissociation of oligomers, the height change for some oligomers, possibly resulting from conformational changes in lysenin, could also be visualized. After the entire membrane surface was covered with a well-ordered oligomer lattice, the lysenin molecules were firmly bound on the membrane and the oligomers neither dissociated nor diffused. Our results reveal the dynamic nature of the oligomers of a lipid-binding toxin during the formation of an hcp structure. Visualization of this dynamic process is essential for the elucidation of the assembling mechanism of some PFTs that can form ordered structures on the membrane.  相似文献   
14.
We report a dense genetic linkage map of Heliconius erato, a neotropical butterfly that has undergone a remarkable adaptive radiation in warningly colored mimetic wing patterns. Our study exploited natural variation segregating in a cross between H. erato etylus and H. himera to localize wing color pattern loci on a dense linkage map containing amplified fragment length polymorphisms (AFLP), microsatellites, and single-copy nuclear loci. We unambiguously identified all 20 autosomal linkage groups and the sex chromosome (Z). The map spanned a total of 1430 Haldane cM and linkage groups varied in size from 26.3 to 97.8 cM. The average distance between markers was 5.1 cM. Within this framework, we localized two major color pattern loci to narrow regions of the genome. The first gene, D, responsible for red/orange elements, had a most likely placement in a 6.7-cM region flanked by two AFLP markers on the end of a large 87.5-cM linkage group. The second locus, Sd, affects the melanic pattern on the forewing and was found within a 6.3-cM interval between flanking AFLP loci. This study complements recent linkage analysis of H. erato's comimic, H. melpomene, and forms the basis for marker-assisted physical mapping and for studies into the comparative genetic architecture of wing-pattern mimicry in Heliconius.  相似文献   
15.
Recent years have seen the greatest ecological disturbances of our times, with global human expansion, species and habitat loss, climate change, and the emergence of new and previously-known infectious diseases. Biodiversity loss affects infectious disease risk by disrupting normal relationships between hosts and pathogens. Mosquito-borne pathogens respond to changing dynamics on multiple transmission levels and appear to increase in disturbed systems, yet current knowledge of mosquito diversity and the relative abundance of vectors as a function of habitat change is limited. We characterize mosquito communities across habitats with differing levels of anthropogenic ecological disturbance in central Thailand. During the 2008 rainy season, adult mosquito collections from 24 sites, representing 6 habitat types ranging from forest to urban, yielded 62,126 intact female mosquitoes (83,325 total mosquitoes) that were assigned to 109 taxa. Female mosquito abundance was highest in rice fields and lowest in forests. Diversity indices and rarefied species richness estimates indicate the mosquito fauna was more diverse in rural and less diverse in rice field habitats, while extrapolated estimates of true richness (Chao1 and ACE) indicated higher diversity in the forest and fragmented forest habitats and lower diversity in the urban. Culex sp. (Vishnui subgroup) was the most common taxon found overall and the most frequent in fragmented forest, rice field, rural, and suburban habitats. The distributions of species of medical importance differed significantly across habitat types and were always lowest in the intact, forest habitat. The relative abundance of key vector species, Aedes aegypti and Culex quinquefasciatus, was negatively correlated with diversity, suggesting that direct species interactions and/or habitat-mediated factors differentially affecting invasive disease vectors may be important mechanisms linking biodiversity loss to human health. Our results are an important first step for understanding the dynamics of mosquito vector distributions under changing environmental features across landscapes of Thailand.  相似文献   
16.
Pore-forming toxins (PFTs) are soluble proteins that can oligomerize on the cell membrane and induce cell death by membrane insertion. PFT oligomers sometimes form hexagonal close-packed (hcp) structures on the membrane. Here, we show the assembling of the sphingomyelin (SM)-binding PFT, lysenin, into an hcp structure after oligomerization on SM/cholesterol membrane. This process was monitored by high-speed atomic force microscopy. Hcp assembly was driven by reorganization of lysenin oligomers such as association/dissociation and rapid diffusion along the membrane. Besides rapid association/dissociation of oligomers, the height change for some oligomers, possibly resulting from conformational changes in lysenin, could also be visualized. After the entire membrane surface was covered with a well-ordered oligomer lattice, the lysenin molecules were firmly bound on the membrane and the oligomers neither dissociated nor diffused. Our results reveal the dynamic nature of the oligomers of a lipid-binding toxin during the formation of an hcp structure. Visualization of this dynamic process is essential for the elucidation of the assembling mechanism of some PFTs that can form ordered structures on the membrane.  相似文献   
17.
Chromosome numbers and karyotypes of Cyprinid fish Alburnoides bipunctatus (Bloch, 1,782) from the River Tigris were determined by the chromosome preparation technique from uncultured kidney cells. The diploid chromosome number 2n=50, was composed of 8 pairs of metacentric, 11 pairs of submetacentric and 6 pairs of subtelo-acrocentric chromosomes (NF=88). Sex chromosomes were not determined in the this species. The results were briefly discussed with other, previously conducted studies.  相似文献   
18.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号