首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   16篇
  2021年   1篇
  2019年   1篇
  2017年   2篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2006年   3篇
  2005年   5篇
  2004年   2篇
  2003年   4篇
  2002年   6篇
  2001年   1篇
  2000年   5篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1992年   4篇
  1991年   2篇
  1989年   3篇
  1988年   1篇
  1987年   5篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1977年   2篇
  1966年   2篇
排序方式: 共有90条查询结果,搜索用时 15 毫秒
11.
Shigella infection is characterized by the induction of acute inflammation, which is responsible for the massive tissue destruction of the intestinal mucosa. A murine model would be a valuable tool for gaining a better understanding of the physiopathology of shigellosis and the host immune response to Shigella infection, but adult mice do not develop disease upon oral inoculation. We therefore attempted to develop a model of infection in newborn mice. Four-day-old mice inoculated with 50 microl of 5 x 10(9) invasive wild-type Shigella flexneri 5a were susceptible to bacterial infection, but mice inoculated with the non-invasive strain BS176 were not. Histologically, 4-day-old mice infected with the invasive strain presented intestinal lesions and inflammation similar to those described in patients with shigellosis. Moreover, cytokine and chemokine responses consistent with inflammation were observed. Lower bacterial inocula induced less severe intestinal damage. In contrast, 5-day-old mice inoculated with either the invasive or the non-invasive strain were not infected. We have thus established a mouse model that is suitable for the study of the pathogenesis of intestinal Shigella infection.  相似文献   
12.
The current status of kinetoplastids phylogeny and evolution is discussed in view of the recent progresses on genomics. Some ideas on a potential framework for the evolutionary genomics of kinetoplastids are presented.  相似文献   
13.
Intracoronary brachytherapy has recently emerged as a new therapy to prevent restenosis. Initial experimental work was achieved in animal models and the results were assessed by histomorphometry. Initial clinical trials used angiography to guide dosimetry and to assess efficacy. Intravascular ultrasound (IVUS) permits tomographic examination of the vessel wall, elucidating the true morphology of the lumen and transmural components, which cannot be investigated on the lumenogram obtained by angiography. This paper reviews the use of IVUS in the clinical studies of brachytherapy conducted to date. IVUS allows clinicians to make a thorough assessment of the remodeling of the vessel and appears to have a major role to play in facilitating understanding of the underlying mechanisms of action in this emerging field. The authors propose that state-of-the-art IVUS techniques should be employed to further knowledge of the mechanisms of action of brachytherapy in atherosclerotic human coronary arteries.  相似文献   
14.

Background  

Remote homology detection is a challenging problem in Bioinformatics. Arguably, profile Hidden Markov Models (pHMMs) are one of the most successful approaches in addressing this important problem. pHMM packages present a relatively small computational cost, and perform particularly well at recognizing remote homologies. This raises the question of whether structural alignments could impact the performance of pHMMs trained from proteins in the Twilight Zone, as structural alignments are often more accurate than sequence alignments at identifying motifs and functional residues. Next, we assess the impact of using structural alignments in pHMM performance.  相似文献   
15.
Nonfusogenic mammalian orthoreovirus (reovirus) is an enteric pathogen of mice and a useful model for studies of how an enteric virus crosses the mucosal barrier of its host and is subject to control by the mucosal immune system. We recently generated and characterized a new murine immunoglobulin A (IgA)-class monoclonal antibody (MAb), 1E1, that binds to the adhesin fiber, sigma1, of reovirus type 1 Lang (T1L) and thereby neutralizes the infectivity of that strain in cell culture. 1E1 is produced in hybridoma cultures as a mixture of monomers, dimers, and higher polymers and is protective against peroral challenges with T1L either when the MAb is passively administered or when it is secreted into the intestines of mice bearing subcutaneous hybridoma tumors. In the present study, selection and analysis of mutants resistant to neutralization by 1E1 identified the region of T1L sigma1 to which the MAb binds. The region bound by a previously characterized type 1 sigma1-specific neutralizing IgG MAb, 5C6, was identified in the same way. Each of the 15 mutants isolated and analyzed was found to be much less sensitive to neutralization by either 1E1 or 5C6, suggesting the two MAbs bind to largely overlapping regions of sigma1. The tested mutants retained the capacity to recognize specific glycoconjugate receptors on rabbit M cells and cultured epithelial cells, even though viral binding to epithelial cells was inhibited by both MAbs. S1 sequence determinations for 12 of the mutants identified sigma1 mutations at four positions between residues 415 and 447, which contribute to forming the receptor-binding head domain. When aligned with the sigma1 sequence of reovirus type 3 Dearing (T3D) and mapped onto the previously reported crystal structure of the T3D sigma1 trimer, the four positions cluster on the side of the sigma1 head, across the interface between two subunits. Three such interface-spanning epitopes are thus present per sigma1 trimer and require the intact quaternary structure of the head domain for MAb binding. Identification of these intersubunit epitopes on sigma1 opens the way for further studies of the mechanisms of antibody-based neutralization and protection with type 1 reoviruses.  相似文献   
16.
17.
18.
In this second article on mucosal defence and transepithelial transport, Jean-Pierre Kraehenbuhl and Marian Neutra discuss the part played by a special class of antibody, polymeric IgA, in the protection of mucosal surfaces lining the digestive, respiratory and genital tracts, and the implications for mucosal vaccines. Polymeric IgA crosslinks luminal antigens or pathogens, thus preventing their interaction with epithelial cells. Following stimulation by antigen in the organized mucosal lymphoid tissue, effector B lymphocytes enter the circulation and migrate to distant mucosal or glandular sites, where they differentiate into polymeric-IgA-producing plasma cells. These antibodies reach the environment by transport across the epithelial cells of mucosal and glandular tissues.  相似文献   
19.
The massive secretion of salt and water in cholera-induced diarrhea involves binding of cholera toxin (CT) to ganglioside GM1 in the apical membrane of intestinal epithelial cells, translocation of the enzymatically active A1-peptide across the membrane, and subsequent activation of adenylate cyclase located on the cytoplasmic surface of the basolateral membrane. Studies on nonpolarized cells show that CT is internalized by receptor-mediated endocytosis, and that the A1-subunit may remain membrane associated. To test the hypothesis that toxin action in polarized cells may involve intracellular movement of toxin-containing membranes, monolayers of the polarized intestinal epithelial cell line T84 were mounted in modified Ussing chambers and the response to CT was examined. Apical CT at 37 degrees C elicited a short circuit current (Isc: 48 +/- 2.1 microA/cm2; half-maximal effective dose, ED50 integral of 0.5 nM) after a lag of 33 +/- 2 min which bidirectional 22Na+ and 36Cl- flux studies showed to be due to electrogenic Cl- secretion. The time course of the CT-induced Isc response paralleled the time course of cAMP generation. The dose response to basolateral toxin at 37 degrees C was identical to that of apical CT but lag times (24 +/- 2 min) and initial rates were significantly less. At 20 degrees C, the Isc response to apical CT was more strongly inhibited (30-50%) than the response to basolateral CT, even though translocation occurred in both cases as evidenced by the formation of A1-peptide. A functional rhodamine-labeled CT-analogue applied apically or basolaterally at 20 degrees C was visualized only within endocytic vesicles close to apical or basolateral membranes, whereas movement into deeper apical structures was detected at 37 degrees C. At 15 degrees C, in contrast, reduction to the A1-peptide was completely inhibited and both apical and basolateral CT failed to stimulate Isc although Isc responses to 1 nM vasoactive intestinal peptide, 10 microM forskolin, and 3 mM 8Br-cAMP were intact. Re-warming above 32 degrees C restored CT-induced Isc. Preincubating monolayers for 30 min at 37 degrees C before cooling to 15 degrees C overcame the temperature block of basolateral CT but the response to apical toxin remained completely inhibited. These results identify a temperature-sensitive step essential to apical toxin action on polarized epithelial cells. We suggest that this event involves vesicular transport of toxin-containing membranes beyond the apical endosomal compartment.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号