首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2229篇
  免费   143篇
  2372篇
  2022年   18篇
  2021年   28篇
  2020年   17篇
  2019年   24篇
  2018年   30篇
  2017年   19篇
  2016年   55篇
  2015年   74篇
  2014年   92篇
  2013年   103篇
  2012年   120篇
  2011年   122篇
  2010年   80篇
  2009年   76篇
  2008年   131篇
  2007年   127篇
  2006年   111篇
  2005年   113篇
  2004年   87篇
  2003年   99篇
  2002年   94篇
  2001年   57篇
  2000年   47篇
  1999年   41篇
  1998年   40篇
  1997年   33篇
  1996年   26篇
  1995年   30篇
  1994年   22篇
  1993年   25篇
  1992年   43篇
  1991年   26篇
  1990年   22篇
  1989年   19篇
  1988年   23篇
  1987年   15篇
  1986年   15篇
  1985年   23篇
  1984年   24篇
  1983年   15篇
  1982年   12篇
  1981年   13篇
  1980年   17篇
  1979年   25篇
  1978年   15篇
  1977年   15篇
  1976年   11篇
  1975年   13篇
  1973年   12篇
  1972年   14篇
排序方式: 共有2372条查询结果,搜索用时 15 毫秒
141.
Abstract: Changes in hydrocarbon content in soils resulted in characteristic shifts of the substrate utilization patterns as tested with the Biolog system. The altered patterns of substrate utilization corresponded to similar changes in abundance of hydrocarbon-utilizing bacteria and the occurrence of specific bacterial groups in the soils. Substrate utilization patterns as recorded with the Biolog system are suitable for rapidly assessing dynamics of autochthonous soil communities and evaluating their biodegradative potential.  相似文献   
142.
Similar to the situation in mammalian cells and yeast, messenger ribonucleo protein (mRNP) homeostasis in plant cells depends on rapid transitions between three functional states, i.e. translated mRNPs in polysomes, stored mRNPs and mRNPs under degradation. Studies in mammalian cells showed that whenever the dynamic exchange of the components between these states is disrupted, stalled mRNPs accumulate in cytoplasmic aggregates, such as stress granules (SGs) or processing bodies (PBs). We identified PBs and SGs in plant cells by detection of DCP1, DCP2 and XRN4, as marker proteins for the 5'-->3' mRNA degradation pathway, and eIF4E, as well as the RNA binding proteins RBP47 and UBP1, as marker proteins for stored mRNPs in SGs. Cycloheximide-inhibited translation, stress treatments and mutants defective in mRNP homeostasis were used to study the dynamic transitions of mRNPs between SGs and PBs. SGs and PBs can be clearly discriminated from the previously described heat stress granules (HSGs), which evidently do not contain mRNPs. Thus, the role of HSGs as putative mRNP storage sites must be revised.  相似文献   
143.
144.
The E6 protein of cancer‐associated human papillomavirus type 16 (HPV16) binds to cellular p53 and promotes its degradation through the ubiquitin pathway. In an attempt to identify the regions of E6 that could be targetted for functional inhibition, we generated monoclonal antibodies to the HPV16 E6 oncoprotein (16E6) and analysed their effect on E6‐mediated p53 in vitro degradation. The isolated antibodies recognize the 16E6 oncoprotein expressed in the CaSki carcinoma cell line and strongly inhibit the proteolysis of p53 in vitro by binding specifically to a region of 10 residues located at the N‐terminal end of 16E6. The variable regions of these antibodies were cloned and expressed in E. coli as single chain Fvs (scFvs). Purified scFvs were present in monomeric form and totally abolished 16E6‐mediated p53 degradation by preventing the formation of E6/p53 protein complexes. Our results demonstrate that monovalent binding of scFvs to the N‐terminal end of 16E6 abrogates the biological mechanisms leading to the degradation of p53, and they suggest that this region of 16E6 may be a useful in vivo target for blocking the oncogenic activity of HPV16 E6 protein. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
145.
Nanosecond pulsed laser irradiation can trigger a release of nucleic acids from gold nanoparticles, but the involved nanoeffects are not fully understood yet. Here we investigate the release of coumarin labeled siRNA from 15 to 30 nm gold particles after nanosecond pulsed laser irradiation. Temperatures in the particle and near the surface were calculated for the different radiant exposures. Upon irradiation with laser pulses of 4 nanosecond duration release started for both particle sizes at a calculated temperature increase of approximately 500 K. Maximum coumarin release was observed for 15 nm particles after irradiation with radiant exposure of 80 mJ cm?2 and with 32 mJ cm?2 for 30 nm particles. This corresponds to a temperature increase of 815 and 900 K, respectively. Our results show that the molecular release by nanosecond pulsed irradiation is based on a different mechanism compared to continuous or femtosecond irradiation. Local temperatures are considerably higher and it is expected that bubble formation plays a crucial role in release and damage to cellular structures.   相似文献   
146.
147.
Transport of nuclear encoded proteins into mitochondria is mediated by multisubunit translocation machineries in the outer and inner membranes of mitochondria. The TOM complex contains receptor and pore components that facilitate the recognition of preproteins and their transfer through the outer membrane. In addition, the complex contains a set of small proteins. Tom7 and Tom6 have been found in Neurospora and yeast, Tom5 has been found so far only in the latter organism. In the present study, we identified Neurospora Tom5 and analyzed its function in comparison to yeast Tom5, which has been proposed to play a role as a receptor-like component. Neurospora Tom5 crosses the outer membrane with its carboxyl terminus facing the intermembrane space like the other small Tom components. The temperature-sensitive growth phenotype of the yeast TOM5 deletion was rescued by overexpression of Neurospora Tom5. On the other hand, Neurospora cells deficient in tom5 did not exhibit any defect in growth. The structural stability of TOM complexes from cells devoid of Tom5 was significantly altered in yeast but not in Neurospora. The efficiency of protein import in Neurospora mitochondria was not affected by deletion of tom5, whereas in yeast it was reduced as compared with wild type. We conclude that the main role of Tom5, rather than being a receptor, is maintaining the structural integrity of the TOM complex.  相似文献   
148.
The performance of a battery of three of the most commonly used in vitro genotoxicity tests--Ames+mouse lymphoma assay (MLA)+in vitro micronucleus (MN) or chromosomal aberrations (CA) test--has been evaluated for its ability to discriminate rodent carcinogens and non-carcinogens, from a large database of over 700 chemicals compiled from the CPDB ("Gold"), NTP, IARC and other publications. We re-evaluated many (113 MLA and 30 CA) previously published genotoxicity results in order to categorise the performance of these assays using the response categories we established. The sensitivity of the three-test battery was high. Of the 553 carcinogens for which there were valid genotoxicity data, 93% of the rodent carcinogens evaluated in at least one assay gave positive results in at least one of the three tests. Combinations of two and three test systems had greater sensitivity than individual tests resulting in sensitivities of around 90% or more, depending on test combination. Only 19 carcinogens (out of 206 tested in all three tests, considering CA and MN as alternatives) gave consistently negative results in a full three-test battery. Most were either carcinogenic via a non-genotoxic mechanism (liver enzyme inducers, peroxisome proliferators, hormonal carcinogens) considered not necessarily relevant for humans, or were extremely weak (presumed) genotoxic carcinogens (e.g. N-nitrosodiphenylamine). Two carcinogens (5-chloro-o-toluidine, 1,1,2,2-tetrachloroethane) may have a genotoxic element to their carcinogenicity and may have been expected to produce positive results somewhere in the battery. We identified 183 chemicals that were non-carcinogenic after testing in both male and female rats and mice. There were genotoxicity data on 177 of these. The specificity of the Ames test was reasonable (73.9%), but all mammalian cell tests had very low specificity (i.e. below 45%), and this declined to extremely low levels in combinations of two and three test systems. When all three tests were performed, 75-95% of non-carcinogens gave positive (i.e. false positive) results in at least one test in the battery. The extremely low specificity highlights the importance of understanding the mechanism by which genotoxicity may be induced (whether it is relevant for the whole animal or human) and using weight of evidence approaches to assess the carcinogenic risk from a positive genotoxicity signal. It also highlights deficiencies in the current prediction from and understanding of such in vitro results for the in vivo situation. It may even signal the need for either a reassessment of the conditions and criteria for positive results (cytotoxicity, solubility, etc.) or the development and use of a completely new set of in vitro tests (e.g. mutation in transgenic cell lines, systems with inherent metabolic activity avoiding the use of S9, measurement of genetic changes in more cancer-relevant genes or hotspots of genes, etc.). It was very difficult to assess the performance of the in vitro MN test, particularly in combination with other assays, because the published database for this assay is relatively small at this time. The specificity values for the in vitro MN assay may improve if data from a larger proportion of the known non-carcinogens becomes available, and a larger published database of results with the MN assay is urgently needed if this test is to be appreciated for regulatory use. However, specificity levels of <50% will still be unacceptable. Despite these issues, by adopting a relative predictivity (RP) measure (ratio of real:false results), it was possible to establish that positive results in all three tests indicate the chemical is greater than three times more likely to be a rodent carcinogen than a non-carcinogen. Likewise, negative results in all three tests indicate the chemical is greater than two times more likely to be a rodent non-carcinogen than a carcinogen. This RP measure is considered a useful tool for industry to assess the likelihood of a chemical possessing carcinogenic potential from batteries of positive or negative results.  相似文献   
149.
We recently described that in the metastasizing rat pancreatic carcinoma line BSp73ASML the cell-cell adhesion molecule EpCAM, CD44 variant isoforms and the tetraspanins D6.1A and CD9 form a complex that is located in glycolipid-enriched membrane microdomains. This complex contains, in addition, an undefined 20 kDa protein. As such complex formation influenced cell-cell adhesion and apoptosis resistance, it became of interest to identify the 20 kDa polypeptide. This 20 kDa protein, which co-precipitated with EpCAM in BSp73ASML lysates, was identified as the tight junction protein claudin-7. Correspondingly, an association between EpCAM and claudin-7 was noted in rat and human tumors and in non-transformed tissues of the gastrointestinal tract. Co-localization of the two molecules was most pronounced at basolateral membranes, but was also observed in tight junctions. Evidence for direct protein-protein interactions between EpCAM and claudin-7 was obtained by co-immunoprecipitation after treatment of tumor cells with a membrane-permeable chemical cross-linker. The complex, which is located in glycolipid-enriched membrane microdomains, is not disrupted by partial cholesterol depletion, but claudin-7 phosphorylation is restricted to the localization in glycolipid-enriched membrane microdomains. This is the first report on an association between EpCAM and claudins in both non-transformed tissues and metastasizing tumor cell lines.  相似文献   
150.
The multiple biological functions of the small polypeptide ubiquitin are mirrored by its unparalleled conservation on the amino acid and gene organization level. During the last years, it has become widely accepted that ubiquitin is an essential component in the ATP-dependent nonlysosomal protein degradation pathway occurring in all eukaryotic organisms. As turnover, consisting of protein synthesis and disassembly, is a central and vital process for each living cell, ubiquitin-mediated proteolysis is of enormous physiological value. The components of the ubiquitin ligation system have been characterized skillfully in plant and animal cells, but at the moment many questions remain as to how the high degree of specificity that is necessary for the regulation of intracellular breakdown is ensured. The recent hypotheses and models proposed for the basic mechanisms of protein recognition, conjugation and degradation will be discussed in detail. The existence of ubiquitin-protein conjugates which are not rapidly degraded clearly suggested that the role of ubiquitin is not restricted in its implication for protein turnover. Alterations of DNA structure, specific cell recognition mechanisms and cytoskeletal variations were observed as further ubiquitin-dependent processes which are not directly coupled to protein degradation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号