首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   489篇
  免费   83篇
  572篇
  2021年   10篇
  2020年   3篇
  2019年   3篇
  2017年   4篇
  2016年   7篇
  2015年   17篇
  2014年   24篇
  2013年   23篇
  2012年   26篇
  2011年   30篇
  2010年   11篇
  2009年   10篇
  2008年   27篇
  2007年   23篇
  2006年   20篇
  2005年   19篇
  2004年   18篇
  2003年   19篇
  2002年   24篇
  2001年   17篇
  2000年   16篇
  1999年   12篇
  1998年   8篇
  1997年   13篇
  1996年   11篇
  1995年   9篇
  1994年   13篇
  1993年   3篇
  1992年   17篇
  1991年   7篇
  1990年   12篇
  1989年   5篇
  1988年   3篇
  1987年   9篇
  1986年   5篇
  1985年   4篇
  1984年   5篇
  1980年   3篇
  1979年   5篇
  1978年   7篇
  1975年   4篇
  1974年   3篇
  1972年   6篇
  1971年   5篇
  1970年   3篇
  1969年   3篇
  1967年   3篇
  1966年   5篇
  1956年   2篇
  1936年   2篇
排序方式: 共有572条查询结果,搜索用时 15 毫秒
541.
Blood-based neurochemical diagnosis of vascular dementia: a pilot study   总被引:3,自引:0,他引:3  
Blood-based tests for the differential diagnosis of Alzheimer's disease (AD) are under intensive investigation and have shown promising results with regard to Abeta40 and Abeta42 peptide species in incipient AD. Moreover, plasma Abeta40 was suggested as an independent cerebrovascular risk factor candidate. These considerations prompted us to analyse a total of 72 plasma samples in vascular dementias (VAD, n = 15), AD with cerebrovascular disease (AD with CVD, n = 7), AD (n = 15), Parkinson's disease and Parkinson's disease dementia (PD/PDD, n = 20) and 15 patients with depression that served as controls (DC) for distinct plasma amyloid-beta (Abeta) peptide patterns. For the analysis of plasma we used immunoprecipitation followed by the quantitative Abeta-SDS-PAGE/immunoblot. For comparison, CSF tau and Abeta1-42 analyses were performed. The major outcome was an increase in Abeta1-40 in plasma of VAD paralleled by a decrease in the ratio of Abeta1-38/Abeta1-40. The ratio Abeta1-38/Abeta1-40 in plasma enabled contrasts of beyond 85% and 80% for discriminating VAD from DC and all other patients, respectively. In CSF, we confirmed the typical CSF biomarker constellation of increased tau and diminished Abeta1-42 levels for AD. The diagnostic accuracy of plasma Abeta1-38/Abeta1-40 for VAD resembled the accuracy of CSF biomarkers for AD. From the presented results, we consider the ratio of plasma Abeta1-38/Abeta1-40 peptides to be a blood-based biomarker candidate for VAD.  相似文献   
542.
Acclimation is the capacity to adapt to environmental changes within the lifetime of an individual. This ability allows plants to cope with the continuous variation in ambient conditions to which they are exposed as sessile organisms. Because environmental changes and extremes are becoming even more pronounced due to the current period of climate change, enhancing the efficacy of plant acclimation is a promising strategy for mitigating the consequences of global warming on crop yields. At the cellular level, the chloroplast plays a central role in many acclimation responses, acting both as a sensor of environmental change and as a target of cellular acclimation responses. In this Perspective article, we outline the activities of the Green Hub consortium funded by the German Science Foundation. The main aim of this research collaboration is to understand and strategically modify the cellular networks that mediate plant acclimation to adverse environments, employing Arabidopsis, tobacco (Nicotiana tabacum) and Chlamydomonas as model organisms. These efforts will contribute to ‘smart breeding’ methods designed to create crop plants with improved acclimation properties. To this end, the model oilseed crop Camelina sativa is being used to test modulators of acclimation for their potential to enhance crop yield under adverse environmental conditions. Here we highlight the current state of research on the role of gene expression, metabolism and signalling in acclimation, with a focus on chloroplast-related processes. In addition, further approaches to uncovering acclimation mechanisms derived from systems and computational biology, as well as adaptive laboratory evolution with photosynthetic microbes, are highlighted.  相似文献   
543.
From arid, high desert soil samples collected near Bend, Oregon, 19 unique bacteria were isolated. Each strain was identified by 16S rRNA gene sequencing, and their organic extracts were tested for antibacterial and antiproliferative activities. Noteworthy, six extracts (30 %) exhibited strong inhibition resulting in less than 50 % cell proliferation in more than one cancer cell model, tested at 10 μg/mL. Principal component analysis (PCA) of LC/MS data revealed drastic differences in the metabolic profiles found in the organic extracts of these soil bacteria. In total, fourteen potent antibacterial and/or cytotoxic metabolites were isolated via bioactivity-guided fractionation, including two new natural products: a pyrazinone containing tetrapeptide and 7-methoxy-2,3-dimethyl-4H-chromen-4-one, as well as twelve known compounds: furanonaphthoquinone I, bafilomycin C1 and D, FD-594, oligomycin A, chloramphenicol, MY12-62A, rac-sclerone, isosclerone, tunicamycin VII, tunicamycin VIII, and (6S,16S)-anthrabenzoxocinone 1.264-C.  相似文献   
544.
Oxa1 serves as a protein insertase of the mitochondrial inner membrane that is evolutionary related to the bacterial YidC insertase. Its activity is critical for membrane integration of mitochondrial translation products and conservatively sorted inner membrane proteins after their passage through the matrix. All Oxa1 substrates identified thus far have bacterial homologs and are of endosymbiotic origin. Here, we show that Oxa1 is critical for the biogenesis of members of the mitochondrial carrier proteins. Deletion mutants lacking Oxa1 show reduced steady‐state levels and activities of the mitochondrial ATP/ADP carrier protein Aac2. To reduce the risk of indirect effects, we generated a novel temperature-sensitive oxa1 mutant that allows rapid depletion of a mutated Oxa1 variant in situ by mitochondrial proteolysis. Oxa1-depleted mitochondria isolated from this mutant still contain normal levels of the membrane potential and of respiratory chain complexes. Nevertheless, in vitro import experiments showed severely reduced import rates of Aac2 and other members of the carrier family, whereas the import of matrix proteins was unaffected. From this, we conclude that Oxa1 is directly or indirectly required for efficient biogenesis of carrier proteins. This was unexpected, since carrier proteins are inserted into the inner membrane from the intermembrane space side and lack bacterial homologs. Our observations suggest that the function of Oxa1 is relevant not only for the biogenesis of conserved mitochondrial components such as respiratory chain complexes or ABC transporters but also for mitochondria-specific membrane proteins of eukaryotic origin.  相似文献   
545.
Experiments were carried out to investigate the contribution of ADP-glucose pyrophosphorylase and the plastid phosphoglucosemutase to the control of starch synthesis. Mutants ofArabidopsis thaliana (L.) Heyhn. were constructed with 50% and 7% of the wild-type adenosine 5′-diphosphoglucose pyrophosphorylase (ADPGlc-PPase), or 50% and null plastid phosphoglucomutase (PGM). The changes in the steady-state rates of sucrose synthesis, starch synthesis and CO2 fixation were measured in saturating CO2 in low (75 μmol·m−2·s−1) and high (600 μmol·m−2·s−1) irradiance. In low irradiance, a 50% decrease of PGM had no significant effect on fluxes, while a 50% and 93% decrease of ADPGlc-PPase led to a 23% and 74% inhibition of starch synthesis. Decreased ADPGlc-PPase led to an increase of hexose phosphates, triose phosphates and fructose-1,6-bisphosphate. Fixation of CO2 was not inhibited because the inhibition of starch synthesis was matched by a stimulation of sucrose synthesis. In high irradiance, a 50% decrease of PGM led to a 20% inhibition of starch synthesis. A 50% and 93% decrease of ADPGlc-PPase led to a 39% and 90% inhibition of starch synthesis. Sucrose synthesis was also inhibited, and the rate of photosynthesis was decreased. Decreased ADPGlc-PPase led to an increase of hexose phosphates but triose phosphates and fructose-1,6-bisphosphate did not increase. These results are used to estimate flux-control coefficients for these enzymes for starch synthesis. Firstly, the flux to starch is only controlled by ADPGlc-PPase in low irradiance, but control is redistributed to other enzymes in the pathway when a rapid flux is imposed, e.g. in high irradiance and CO2. Secondly, reducing the rate of starch synthesis by decreasing the activity of enzymes in this pathway does not always lead to a compensating increase in the rate of sucrose synthesis. Thirdly, decreasing the activity of an enzyme by a factor of two compared to the remainder of the pathway often leads to it exerting very considerable control. Fourthly, each enzyme starts to exert considerable control when only a fraction of its Vmax activity is being utilised in vivo, for example the maximum flux at ADPGlc-PPase never exceeded 20% of the Vmax activity. The summation theory is also applied to check whether additional major control sites are required. In low irradiance, the efficiency of light harvesting will exert considerable control over the rate of starch synthesis.  相似文献   
546.
547.
The complex-type N-linked glycans of plants differ markedly in structure from those of animals. Like those of insects and mollusks they lack terminal sialic acid(s) and may contain an α-(1,3)-fucose (Fuc) linked to the proximal GlcNAc residue and/or a β-(1,2)-xylose (Xyl) residue attached to the proximal mannose (Man) of the glycan core. N-glycosylated GFPs were used in previous studies showing their effective use to report on membrane traffic between the ER and the Golgi apparatus in plant cells. In all these cases glycosylated tags were added at the GFP termini. Because of the position of the tag and depending on the sorting and accumulation site of these modified GFP, there is always a risk of processing and degradation, and this protein design cannot be considered ideal. Here, we describe the development of three different GFPs in which the glycosylation site is internally localized at positions 80, 133, or 172 in the internal sequence. The best glycosylation site was at position 133. This glycosylated GFPgl133 appears to be protected from undesired processing of the glycosylation site and represents a bivalent reporter for biochemical and microscopic studies. After experimental validation, we can conclude that amino acid 133 is an effective glycosylation site and that the GFPgl133 is a powerful tool for in vivo investigations in plant cell biology.  相似文献   
548.
549.
550.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号