首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   489篇
  免费   83篇
  2021年   10篇
  2020年   3篇
  2019年   3篇
  2017年   4篇
  2016年   7篇
  2015年   17篇
  2014年   24篇
  2013年   23篇
  2012年   26篇
  2011年   30篇
  2010年   11篇
  2009年   10篇
  2008年   27篇
  2007年   23篇
  2006年   20篇
  2005年   19篇
  2004年   18篇
  2003年   19篇
  2002年   24篇
  2001年   17篇
  2000年   16篇
  1999年   12篇
  1998年   8篇
  1997年   13篇
  1996年   11篇
  1995年   9篇
  1994年   13篇
  1993年   3篇
  1992年   17篇
  1991年   7篇
  1990年   12篇
  1989年   5篇
  1988年   3篇
  1987年   9篇
  1986年   5篇
  1985年   4篇
  1984年   5篇
  1980年   3篇
  1979年   5篇
  1978年   7篇
  1975年   4篇
  1974年   3篇
  1972年   6篇
  1971年   5篇
  1970年   3篇
  1969年   3篇
  1967年   3篇
  1966年   5篇
  1956年   2篇
  1936年   2篇
排序方式: 共有572条查询结果,搜索用时 31 毫秒
101.
102.
Prosthetic lipoyl groups are required for the function of several essential multienzyme complexes, such as pyruvate dehydrogenase (PDH), α-ketoglutarate dehydrogenase (KGDH), and the glycine cleavage system (glycine decarboxylase [GDC]). How these proteins are lipoylated has been extensively studied in prokaryotes and yeast (Saccharomyces cerevisiae), but little is known for plants. We earlier reported that mitochondrial fatty acid synthesis by ketoacyl-acyl carrier protein synthase is not vital for protein lipoylation in Arabidopsis (Arabidopsis thaliana) and does not play a significant role in roots. Here, we identify Arabidopsis lipoate-protein ligase (AtLPLA) as an essential mitochondrial enzyme that uses octanoyl-nucleoside monophosphate and possibly other donor substrates for the octanoylation of mitochondrial PDH-E2 and GDC H-protein; it shows no reactivity with bacterial and possibly plant KGDH-E2. The octanoate-activating enzyme is unknown, but we assume that it uses octanoyl moieties provided by mitochondrial β-oxidation. AtLPLA is essential for the octanoylation of PDH-E2, whereas GDC H-protein can optionally also be octanoylated by octanoyltransferase (LIP2) using octanoyl chains provided by mitochondrial ketoacyl-acyl carrier protein synthase to meet the high lipoate requirement of leaf mesophyll mitochondria. Similar to protein lipoylation in yeast, LIP2 likely also transfers octanoyl groups attached to the H-protein to KGDH-E2 but not to PDH-E2, which is exclusively octanoylated by LPLA. We suggest that LPLA and LIP2 together provide a basal protein lipoylation network to plants that is similar to that in other eukaryotes.Lipoic acid (LA; 6,8-dithiooctanoic acid) prosthetic groups are essential for the catalytic activity of four important multienzyme complexes in plants and other organisms: pyruvate dehydrogenase (PDH), α-ketoglutarate dehydrogenase (KGDH), branched-chain α-ketoacid dehydrogenase (BCDH), and the Gly cleavage system (glycine decarboxylase [GDC]; Perham, 2000; Douce et al., 2001; Mooney et al., 2002). In all these multienzyme complexes, LA is covalently attached to the ε-amino group of a particular lysyl residue of the respective protein subunit. Lipoylated E2 subunits of PDH, KGDH, and BCDH are dihydrolipoyl acyltransferases that interact with E1 and E3 subunits to pass acyl intermediates to CoA (Mooney et al., 2002). By contrast, the lipoylated H-protein of GDC acts as a cosubstrate of three other GDC proteins and has no enzymatic activity itself (Douce et al., 2001). In the course of their respective reaction cycles, LA becomes reduced to dihydrolipoic acid. Most of these enzymes are confined to the mitochondrion. As the only exception, PDH is also present in plastids, where it provides acetyl-CoA for fatty acid biosynthesis (Ohlrogge et al., 1979; Lernmark and Gardeström, 1994; Lin et al., 2003).Mitochondria and plastids each have their own route of de novo LA synthesis, both of which start with the synthesis of protein-bound octanoyl chains (Shimakata and Stumpf, 1982; Ohlrogge and Browse, 1995; Wada et al., 1997; Gueguen et al., 2000; Yasuno et al., 2004). These octanoyl moieties are passed on by organelle-specific octanoyltransferases (Wada et al., 2001a, 2001b) to the respective target apoproteins where lipoyl synthase (LIP1) inserts two sulfur atoms to finally produce functional lipoyl groups (Yasuno and Wada, 1998, 2002; Zhao et al., 2003). A similar pathway has been identified in mammalian mitochondria (Morikawa et al., 2001; Witkowski et al., 2007). In quantitative terms, leaf mesophyll mitochondria have an extraordinarily high requirement for lipoate, because they contain very large amounts of GDC to catalyze the photorespiratory Gly-to-Ser conversion (Bauwe et al., 2010). For this reason, leaf mesophyll mitochondria are the major site of LA synthesis in plants (Wada et al., 1997).It was thought that the octanoyl chains provided by mitochondrial β-ketoacyl-acyl carrier protein synthase (mtKAS) represent the solitary source for protein lipoylation in plant mitochondria (Yasuno et al., 2004). As we reported earlier, however, leaves of mtKAS-deficient knockout mutants show considerable lipoylation of mitochondrial PDH-E2 and KGDH-E2 subunits and some residual lipoylation of GDC H-protein; roots are not at all impaired. Accordingly, the phenotype of such mutants can be fully cured in the low-photorespiratory condition of elevated CO2 (Ewald et al., 2007). These observations indicated that plant mitochondria, in addition to the mtKAS-LIP2-LIP1 route of protein lipoylation, can resort to an alternative pathway. This would not be uncommon. In Escherichia coli, for example, a salvage pathway utilizes free octanoate or LA in an ATP-dependent two-step reaction catalyzed by the bifunctional enzyme lipoate-protein ligase A (LPLA; Morris et al., 1995). Archaea (Christensen and Cronan, 2009; Posner et al., 2009) and vertebrates (Tsunoda and Yasunobu, 1967) require two separate enzymes to first activate octanoate or LA to lipoyl-nucleoside monophosphate (NMP) and then, in a second step, to convey the activated lipoyl group to the respective target proteins. The lipoate-activating enzyme (LAE) of mammals was identified as a refunctioned medium-chain acyl-CoA synthetase that utilizes GTP to produce lipoyl-GMP (Fujiwara et al., 2001). LIP3 from yeast (Saccharomyces cerevisiae) can use octanoyl-CoA to octanoylate apoE2 proteins (Hermes and Cronan, 2013), whereas octanoyl groups from fatty acid biosynthesis are first attached to H-protein and then passed on to apoE2 proteins (Schonauer et al., 2009).The physiological significance of lipoyl-protein ligases in plants is not exactly known. Such enzymes do not operate in plastids (Ewald et al., 2014) but could be present in mitochondria. A single-gene-encoded LPLA with predicted mitochondrial localization has been identified in rice (Oryza sativa; Kang et al., 2007). Complementation studies with the lipoylation-deficient E. coli mutant TM137 (Morris et al., 1995) suggested that OsLPLA belongs to the bifunctional type of LPLAs. We report the identification of the homologous enzyme in Arabidopsis (Arabidopsis thaliana), provide evidence for its mitochondrial location, and show that Arabidopsis LPLA requires a separate enzyme for octanoate/lipoate activation. We also examine the interplay between LPLA, LIP2, and the mtKAS route of protein lipoylation and suggest a model for protein lipoylation in plant mitochondria.  相似文献   
103.
To identify rare causal variants in late-onset Parkinson disease (PD), we investigated an Austrian family with 16 affected individuals by exome sequencing. We found a missense mutation, c.1858G>A (p.Asp620Asn), in the VPS35 gene in all seven affected family members who are alive. By screening additional PD cases, we saw the same variant cosegregating with the disease in an autosomal-dominant mode with high but incomplete penetrance in two further families with five and ten affected members, respectively. The mean age of onset in the affected individuals was 53 years. Genotyping showed that the shared haplotype extends across 65 kilobases around VPS35. Screening the entire VPS35 coding sequence in an additional 860 cases and 1014 controls revealed six further nonsynonymous missense variants. Three were only present in cases, two were only present in controls, and one was present in cases and controls. The familial mutation p.Asp620Asn and a further variant, c.1570C>T (p.Arg524Trp), detected in a sporadic PD case were predicted to be damaging by sequence-based and molecular-dynamics analyses. VPS35 is a component of the retromer complex and mediates retrograde transport between endosomes and the trans-Golgi network, and it has recently been found to be involved in Alzheimer disease.  相似文献   
104.
Ectoine and hydroxyectoine belong to the family of compatible solutes and are among the most abundant osmolytes in nature. These compatible solutes protect biomolecules from extreme conditions and maintain their native function. In the present study, we have investigated the effect of ectoine and hydroxyectoine on the domain structures of artificial lung surfactant films consisting of dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylglycerol (DPPG) and the lung surfactant specific surfactant protein C (SP-C) in a molar ratio of 80:20:0.4. The pressure-area isotherms are found to be almost unchanged by both compatible solutes. The topology of the fluid domains shown by scanning force microscopy, which is thought to be responsible for the biophysical behavior under compression, however, is modified giving rise to the assumption that ectoine and hydroxyectoine are favorable for a proper lung surfactant function. This is further evidenced by the analysis of the insertion kinetics of lipid vesicles into the lipid-peptide monolayer, which is clearly enhanced in the presence of both compatible solutes. Thus, we could show that ectoine and hydroxyectoine enhance the function of lung surfactant in a simple model system, which might provide an additional rationale to inhalative therapy.  相似文献   
105.
Neuhaus JM  McCulloch CE  Boylan R 《Biometrics》2011,67(2):654-6; disucssion 656-60
Litière, Alonso, and Molenberghs (2007, Biometrics, 63, 1038-1044) presented the results of simulation studies that they claimed showed that misspecification of the shape of the random effects distribution can produce marked increases in Type II error (decreases in power) of tests based on fits of generalized linear mixed models. However, the article contains a logical fallacy that invalidates this claim. We present logically correct simulation studies that demonstrate little increase in Type II error, consistent with the earlier work that shows little effect due to misspecification.  相似文献   
106.
Summary Statistical models that include random effects are commonly used to analyze longitudinal and correlated data, often with the assumption that the random effects follow a Gaussian distribution. Via theoretical and numerical calculations and simulation, we investigate the impact of misspecification of this distribution on both how well the predicted values recover the true underlying distribution and the accuracy of prediction of the realized values of the random effects. We show that, although the predicted values can vary with the assumed distribution, the prediction accuracy, as measured by mean square error, is little affected for mild‐to‐moderate violations of the assumptions. Thus, standard approaches, readily available in statistical software, will often suffice. The results are illustrated using data from the Heart and Estrogen/Progestin Replacement Study using models to predict future blood pressure values.  相似文献   
107.
Recently, a novel class of genes coding for Ih-channels has been identified in several vertebrates and invertebrates. We isolated a cDNA (AMIH) encoding a putative member of these ion channels from Apis mellifera heads by means of polymerase chain reaction and homology screening. High similarity (88% identical amino acids) to the putative Drosophila melanogaster Ih-channel suggests that the Apis cDNA codes for a hyperpolarization-activated and cyclic nucleotide-gated channel. Functional expression of recombinant AMIH in HEK293 cells gave unitary currents that were preferentially selective for potassium over sodium ions and were activated by hyperpolarizing voltage steps. Cyclic nucleotides shifted the voltage activation curve to more positive membrane potentials. The current kinetics, activation by hyperpolarizing voltage steps and modulatory influence of cyclic nucleotides properties closely resemble those of mammalian Ih-channels. RT-PCR analysis showed pronounced mRNA expression in the antennae, head and body of Apis mellifera. Investigation of hyperpolarization-activated currents in olfactory receptor neurons (ORNs) in a primary cell culture of Apis mellifera antennal cells revealed activation properties similar to the heterologously expressed Ih-channel. By in-situ hybridization and immunohistochemistry, expression of AMIH was seen in olfactory receptor neurons of the bee antennae. We conclude that AMIH is the ion channel responsible for the hyperpolarization-activated currents in olfactory receptor neurons of bee.  相似文献   
108.
Very little is known about the combined effects of low doses of heavy metals and radiation. However, such “multiple stressor” exposure is the reality in the environment. In the work reported in this paper, fish were exposed to cobalt 60 gamma irradiation with or without copper or aluminum in the water. Doses of radiation ranged from 4 to 75 mGy delivered over 48 or 6 h. Copper doses ranged from 10 to 80 μg/L for the same time period. The aluminum dose was 250 μg/L. Gills and skin were removed from the fish after exposure and explanted in tissue culture flasks for investigation of bystander effects of the exposures using a stress signal reporter assay, which has been demonstrated to be a sensitive indicator of homeostatic perturbations in cells. The results show complex synergistic interactions of radiation and copper. Gills on the whole produce more toxic bystander signals than skin, but the additivity scores show highly variable results which depend on dose and time of exposure. The impacts of low doses of copper and low doses of radiation are greater than additive, medium levels of copper alone have a similar level of effect of bystander signal toxicity to the low dose. The addition of radiation stress, however, produces clear protective effects in the reporters treated with skin-derived medium. Gill-derived medium from the same fish did not show protective effects. Radiation exposure in the presence of 80 μg/L led to highly variable results, which due to animal variation were not significantly different from the effect of copper alone. The results are stressor type, stressor concentration and time dependent. Clearly co-exposure to radiation and heavy metals does not always lead to simple additive effects.  相似文献   
109.
The aim of this work was to conduct a comprehensive study about the transport properties of NSAIDs across the blood-brain barrier (BBB) in vitro. Transport studies with celecoxib, diclofenac, ibuprofen, meloxicam, piroxicam and tenoxicam were accomplished across Transwell models based on cell line PBMEC/C1-2, ECV304 or primary rat brain endothelial cells. Single as well as group substance studies were carried out. In group studies substance group compositions, transport medium and serum content were varied, transport inhibitors verapamil and probenecid were added. Resulted permeability coefficients were compared and normalized to internal standards diazepam and carboxyfluorescein. Transport rankings of NSAIDs across each model were obtained. Single substance studies showed similar rankings as corresponding group studies across PBMEC/C1-2 or ECV304 cell layers. Serum content, glioma conditioned medium and inhibitors probenecid and verapamil influenced resulted permeability significantly. Basic differences of transport properties of the investigated NSAIDs were similar comparing all three in vitro BBB models. Different substance combinations in the group studies and addition of probenecid and verapamil suggested that transporter proteins are involved in the transport of every tested NSAID. Results especially underlined the importance of same experimental conditions (transport medium, serum content, species origin, cell line) for proper data comparison.  相似文献   
110.

Background

Several insertion sites have been described for intraosseous puncture in cases of emergencies when a conventional vascular access cannot be established. This pilot study has been designed to evaluate the feasibility of the mandibular bone for the use of an intraosseous vascular access in a cadaver model.

Methodology/Principal Findings

17 dentistry and 16 medical students participating in a voluntary course received a short introduction into the method and subsequently used the battery powered EZ-IO system with a 15 mm cannula for a puncture of the anterior mandible in 33 cadavers. The time needed to perform each procedure was evaluated. India ink was injected into the accesses and during the anatomy course cadavers were dissected to retrace the success or failure of the puncture. Dental students needed 25.5±18.9(mean±standard deviation)s and medical students 33±20.4 s for the procedure (p = 0.18). Floor of mouth extravasation occurred in both groups in 3 cases. Success rates were 82 and 75% (p = 0.93).

Conclusions/Significance

Despite floor of mouth extravasation of injected fluid into a mandibular intraosseous access might severely complicate this procedure, the anterior mandible may be helpful as an alternative to other intraosseous and intravenous insertion sites when these are not available in medical emergencies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号