首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   8篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   4篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   6篇
  2014年   7篇
  2013年   7篇
  2012年   5篇
  2011年   4篇
  2010年   6篇
  2009年   6篇
  2008年   6篇
  2007年   3篇
  2006年   4篇
  2005年   5篇
  2004年   3篇
  2003年   7篇
  2002年   7篇
  2001年   6篇
  2000年   4篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   2篇
  1985年   1篇
  1979年   2篇
  1977年   1篇
  1975年   1篇
  1971年   1篇
排序方式: 共有117条查询结果,搜索用时 15 毫秒
61.
The light subunit of mushroom, Agaricus bisporus, tyrosinase (LSMT), has been identified as an extrinsic component of the enzyme. Its function is unknown, but it can cross an epithelial cell layer, which suggests that it can be absorbed by the intestine. A similar capability has been demonstrated for the HA-33 component of the progenitor toxin from Clostridium botulinum, which is the closest structural homolog of LSMT. Unlike HA-33, LSMT appears to be non-immunogenic as shown by preliminary tests in Swiss Webster mice. We investigated the immunogenicity and histopathology of LSMT in mice to determine its safety in vivo. LSMT did not evoke generation of antibodies after prolonged periods of intraperitoneal administration. Histopathological observations confirmed the absence of responses in organs after twelve weekly administrations of LSMT. We found that LSMT is not toxic and is less immunogenic than the C. botulinum HA-33 protein, which supports further research and development for pharmaceutical application.  相似文献   
62.

Background

Children with neuromuscular disorders with a progressive muscle weakness such as Duchenne Muscular Dystrophy and Spinal Muscular Atrophy frequently develop a progressive scoliosis. A severe scoliosis compromises respiratory function and makes sitting more difficult. Spinal surgery is considered the primary treatment option for correcting severe scoliosis in neuromuscular disorders. Surgery in this population requires a multidisciplinary approach, careful planning, dedicated surgical procedures, and specialized after care.

Methods

The guideline is based on scientific evidence and expert opinions. A multidisciplinary working group representing experts from all relevant specialties performed the research. A literature search was conducted to collect scientific evidence in answer to specific questions posed by the working group. Literature was classified according to the level of evidence.

Results

For most aspects of the treatment scientific evidence is scarce and only low level cohort studies were found. Nevertheless, a high degree of consensus was reached about the management of patients with scoliosis in neuromuscular disorders. This was translated into a set of recommendations, which are now officially accepted as a general guideline in the Netherlands.

Conclusion

In order to optimize the treatment for scoliosis in neuromuscular disorders a Dutch guideline has been composed. This evidence-based, multidisciplinary guideline addresses conservative treatment, the preoperative, perioperative, and postoperative care of scoliosis in neuromuscular disorders.  相似文献   
63.
Receptor based signaling mechanisms are the primary source of cellular regulation. The superfamily of G protein-coupled receptors is the largest and most ubiquitous of the receptor mediated processes. We describe here the analysis in real-time of the assembly and disassembly of soluble G protein-coupled receptor-G protein complexes. A fluorometric method was utilized to determine the dissociation of a fluorescent ligand from the receptor solubilized in detergent. The ligand dissociation rate differs between a receptor coupled to a G protein and the receptor alone. By observing the sensitivity of the dissociation of a fluorescent ligand to the presence of guanine nucleotide, we have shown a time- and concentration-dependent reconstitution of the N-formyl peptide receptor with endogenous G proteins. Furthermore, after the clearing of endogenous G proteins, purified Galpha subunits premixed with bovine brain Gbetagamma subunits were also able to reconstitute with the solubilized receptors. The solubilized N-formyl peptide receptor and Galpha(i3) protein interacted with an affinity of approximately 10(-6) m with other alpha subunits exhibiting lower affinities (Galpha(i3) > Galpha(i2) > Galpha(i1) Galpha(o)). The N-formyl peptide receptor-G protein interactions were inhibited by peptides corresponding to the Galpha(i) C-terminal regions, by Galpha(i) mAbs, and by a truncated form of arrestin-3. This system should prove useful for the analysis of the specificity of receptor-G protein interactions, as well as for the elucidation and characterization of receptor molecular assemblies and signal transduction complexes.  相似文献   
64.
65.
ANG II type 1 (AT1) receptors respond to sustained exposure to ANG II byundergoing downregulation of absolute receptor numbers. It has beenassumed previously that downregulation involves endocytosis. Thepresent study hypothesized that AT1 receptor downregulation occurs independently of receptor endocytosis or G protein coupling. Mutant AT1 receptors with carboxy-terminal deletionsinternalized <5% of radioligand compared with 65% for wild-typeAT1 receptors. The truncated AT1 receptorsretained the ability to undergo downregulation. These data suggest theexistence of an alternative pathway to AT1 receptordegradation that does not require endocytosis, per se. Point mutationsin either the second transmembrane region or second intracellular loopimpaired G protein (Gq) coupling. These receptors exhibiteda biphasic pattern of downregulation. The earliest phase ofdownregulation (0-2 h) was independent of coupling toGq, but no additional downregulation was observed after2 h of ANG II exposure in the receptors with impaired coupling toGq. These data suggest that coupling to Gq isrequired for the later phase (2-24 h) of AT1 receptor downregulation.

  相似文献   
66.
RGS (regulators of G protein signaling) proteins are GTPase-activating proteins for the Galpha subunits of heterotrimeric G proteins and act to regulate signaling by rapidly cycling G protein. RGS proteins may integrate receptors and signaling pathways by physical or kinetic scaffolding mechanisms. To determine whether this results in enhancement and/or selectivity of agonist signaling, we have prepared C6 cells stably expressing the mu-opioid receptor and either pertussis toxin-insensitive or RGS- and pertussis toxin-insensitive Galpha(o). We have compared the activation of G protein, inhibition of adenylyl cyclase, stimulation of intracellular calcium release, and activation of the ERK1/2 MAPK pathway between cells expressing mutant Galpha(o) that is either RGS-insensitive or RGS-sensitive. The mu-receptor agonist [d-Ala(2),MePhe(4),Gly(5)-ol]enkephalin and partial agonist morphine were much more potent and/or had an increased maximal effect in inhibiting adenylyl cyclase and in activating MAPK in cells expressing RGS-insensitive Galpha(o). In contrast, mu-opioid agonist increases in intracellular calcium were less affected. The results are consistent with the hypothesis that the GTPase-activating protein activity of RGS proteins provides a control that limits agonist action through effector pathways and may contribute to selectivity of activation of intracellular signaling pathways.  相似文献   
67.
Agouti and agouti-related protein (AgRP) are endogenous antagonists of the melanocortin receptors (MCxR). Previous data showed that recombinant full-length agouti and a synthetic fragment of AgRP, AgRP (83-132), are inverse agonists at the MC1R and MC4R, respectively. This study demonstrates the smaller analogs AgRP (87-120) and ASIP [90-132 (L89Y)], and short peptides Yc[CRFFNAFC]Y and Qc[CRFFRSAC]S are also MC4R inverse agonists. Furthermore, the relative affinity of the series of MC4R ligands for displacement of radiolabeled antagonist 125I-AgRP (86-132) versus radiolabeled agonist 125I-NDP-MSH did not correlate with ligand efficacy, which is more consistent with an induced-fit model than a simple two-state model of MC4R activation. These data shed new light on the determinants and mechanism of inverse agonism at the MC4R.  相似文献   
68.
Two constructs encoding the human micro-opioid receptor (hMOR) fused at its C terminus to either one of two Galpha subunits, Galpha(o1) (hMOR-Galpha(o1)) and Galpha(i2) (hMOR-Galpha(i2)), were expressed in Escherichia coli at levels suitable for pharmacological studies (0.4-0.5 pmol/mg). Receptors fused to Galpha(o1) or to Galpha(i2) maintained high-affinity binding of the antagonist diprenorphine. Affinities of the micro-selective agonists morphine, [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]enkephalin (DAMGO), and endomorphins as well as their potencies and intrinsic activities in stimulating guanosine 5'-O-(3-[(35)S]thiotriphosphate) ([(35)S]GTPgammaS) binding were assessed in the presence of added purified Gbetagamma subunits. Both fusion proteins displayed high-affinity agonist binding and agonist-stimulated [(35)S]GTPgammaS binding. In the presence of Gbetagamma dimers, the affinities of DAMGO and endomorphin-1 and -2 were higher at hMOR-Galpha(i2) than at hMOR-Galpha(o1), whereas morphine displayed similar affinities at the two chimeras. Potencies of the four agonists in stimulating [(35)S]GTPgammaS binding at hMOR-Galpha(o1) were similar, whereas at hMOR-Galpha(i2), endomorphin-1 and morphine were more potent than DAMGO and endomorphin-2. The intrinsic activities of the four agonists at the two fusion constructs were similar. The results confirm hMOR coupling to Galpha(o1) and Galpha(i2) and support the hypothesis of the existence of multiple receptor conformational states, depending on the nature of the G protein to which it is coupled.  相似文献   
69.
Regulator of G-protein signaling (RGS) proteins accelerate GTP hydrolysis by Galpha subunits speeding deactivation. Galpha deactivation kinetics mediated by RGS are too fast to be directly studied using conventional radiochemical methods. We describe a stopped-flow spectroscopic approach to visualize these rapid kinetics by measuring the intrinsic tryptophan fluorescence decrease of Galpha accompanying GTP hydrolysis and Galpha deactivation on the millisecond time scale. Basal k(cat) values for Galpha(o), Galpha(i1), and Galpha(i2) at 20 degrees C were similar (0.025-0.033 s(-1)). Glutathione S-transferase fusion proteins containing RGS4 and an RGS7 box domain (amino acids 305-453) enhanced the rate of Galpha deactivation in a manner linear with RGS concentration. RGS4-stimulated rates could be measured up to 5 s(-1) at 3 microm, giving a catalytic efficiency of 1.7-2.8 x 10(6) m(-1) s(-1) for all three Galpha subunits. In contrast, RGS7 showed catalytic efficiencies of 0.44, 0.10, and 0.02 x 10(6) m(-1) s(-1) toward Galpha(o), Galpha(i2), and Galpha(i1), respectively. Thus RGS7 is a weaker GTPase activating protein than RGS4 toward all Galpha subunits tested, but it is specific for Galpha(o) over Galpha(i1) or Galpha(i2). Furthermore, the specificity of RGS7 for Galpha(o) does not depend on N- or C-terminal extensions or a Gbeta(5) subunit but resides in the RGS domain itself.  相似文献   
70.
The binding of a drug to a G-protein coupled receptor initiates a complex series of dynamic events that ultimately leads to a cellular response. In addition to the concentrations of receptor, drug and G-protein, important determinants of the cellular response are the rates at which these species interact. However, most models for G-protein coupled receptor signaling are equilibrium models that neglect the role of reaction kinetics. A kinetic ternary-complex model of signaling through G-protein coupled receptors is presented. We demonstrate that this kinetic model can make significantly different predictions than an equilibrium ternary complex model, which provides a different perspective on multiple aspects of the signal transduction cascade, such as agonist efficacy, the effect of precoupled receptors, and the role of RGS proteins. Incorporation of the reaction kinetics is critical for a complete understanding of signal transduction and will ultimately impact the fields of drug discovery and drug design.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号