首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   3篇
  86篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   4篇
  2018年   1篇
  2015年   4篇
  2014年   3篇
  2013年   5篇
  2012年   3篇
  2011年   3篇
  2010年   4篇
  2009年   3篇
  2008年   4篇
  2007年   3篇
  2006年   1篇
  2005年   4篇
  2004年   3篇
  2003年   7篇
  2002年   7篇
  2001年   6篇
  2000年   4篇
  1999年   1篇
  1997年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   2篇
  1985年   1篇
  1979年   1篇
  1975年   1篇
排序方式: 共有86条查询结果,搜索用时 15 毫秒
71.
We examined the hypothesis that decreased inhibitory G protein function in diabetic neuropathy is associated with increased protein kinase C (PKC)-dependent phosphorylation of the Goalpha subunit. Streptozotocin-induced diabetic rats were studied between 4 and 8 weeks after onset of diabetes and compared with aged-matched healthy animals as controls. Opioid-mediated inhibition of forskolin-stimulated cyclic AMP was significantly less in dorsal root ganglia (DRGs) from diabetic rats compared with controls. Activation of PKC in DRGs from control rats was associated with a significant decrease in opioid-mediated inhibition of forskolin-stimulated cyclic AMP that was similar to the decrease in inhibition observed in DRGs from diabetic rats. Both basal and PKC-mediated labeling of Goalpha with 32Pi was significantly less in DRGs from diabetic rats, supporting increased endogenous PKC-dependent phosphorylation of Goalpha. Probing of immunoprecipitated Goalpha with an anti-phospho-serine/threonine specific antibody revealed a significant increase in baseline phosphorylation in diabetic DRGs. Activation of PKC produced a significant increase in phosphorylation in control DRGs but no significant increase in Goalpha in diabetic DRGs. Phosphorylation of PKC-alpha was increased, PKC-betaII was unchanged and PKC-delta decreased in diabetic DRGs. These results suggest that diminished inhibitory G protein function observed in DRGs neurons from diabetic rats involves an isoform-specific PKC-dependent pathway.  相似文献   
72.
Neutrophils are first responders rapidly mobilized to inflammatory sites by a tightly regulated, nonredundant hierarchy of chemoattractants. These chemoattractants engage neutrophil cell surface receptors triggering heterotrimeric G-protein Gαi subunits to exchange GDP for GTP. By limiting the duration that Gαi subunits remain GTP bound, RGS proteins modulate chemoattractant receptor signaling. Here, we show that neutrophils with a genomic knock in of a mutation that disables regulator of G-protein signaling (RGS)-Gαi2 interactions accumulate in the bone marrow and mobilize poorly to inflammatory sites. These defects are attributable to enhanced sensitivity to background signals, prolonged chemoattractant receptor signaling, and inappropriate CXCR2 downregulation. Intravital imaging revealed a failure of the mutant neutrophils to accumulate at and stabilize sites of sterile inflammation. Furthermore, these mice could not control a nonlethal Staphylococcus aureus infection. Neutrophil RGS proteins establish a threshold for Gαi activation, helping to coordinate desensitization mechanisms. Their loss renders neutrophils functionally incompetent.  相似文献   
73.
Although several recent studies have reported that GPCRs adopt multiple conformations, it remains unclear how subtle conformational changes are translated into divergent downstream responses. In this study, we report on a novel class of FRET-based sensors that can detect the ligand/mutagenic stabilization of GPCR conformations that promote interactions with G proteins in live cells. These sensors rely on the well characterized interaction between a GPCR and the C terminus of a Gα subunit. We use these sensors to elucidate the influence of the highly conserved (E/D)RY motif on GPCR conformation. Specifically, Glu/Asp but not Arg mutants of the (E/D)RY motif are known to enhance basal GPCR signaling. Hence, it is unclear whether ionic interactions formed by the (E/D)RY motif (ionic lock) are necessary to stabilize basal GPCR states. We find that mutagenesis of the β2-AR (E/D)RY ionic lock enhances interaction with Gs. However, only Glu/Asp but not Arg mutants increase G protein activation. In contrast, mutagenesis of the opsin (E/D)RY ionic lock does not alter its interaction with transducin. Instead, opsin-specific ionic interactions centered on residue Lys-296 are both necessary and sufficient to promote interactions with transducin. Effective suppression of β2-AR basal activity by inverse agonist ICI 118,551 requires ionic interactions formed by the (E/D)RY motif. In contrast, the inverse agonist metoprolol suppresses interactions with Gs and promotes Gi binding, with concomitant pertussis toxin-sensitive inhibition of adenylyl cyclase activity. Taken together, these studies validate the use of the new FRET sensors while revealing distinct structural mechanisms for ligand-dependent GPCR function.  相似文献   
74.
High-throughput screening (HTS) has historically been used by the pharmaceutical industry to rapidly test hundreds of thousands of compounds to identify potential drug candidates. More recently, academic groups have used HTS to identify new chemical probes or small interfering RNA (siRNA) that can serve as experimental tools to examine the biology or physiology of novel proteins, processes, or interactions. HTS presents a significant challenge with the vast and complex nature of data generated. This report describes MScreen, a Web-based, open-source cheminformatics application for chemical library and siRNA plate management, primary HTS and dose-response data handling, structure search, and administrative functions. Each project in MScreen can be secured with passwords or shared in an open-information environment that enables collaborators to easily compare data from many screens, providing a useful means to identify compounds with desired selectivity. Unique features include compound, substance, mixture, and siRNA plate creation and formatting; automated dose-response fitting and quality control (QC); and user, target, and assay method administration. MScreen provides an effective means to facilitate HTS information handling and analysis in the academic setting so that users can efficiently view their screening data and evaluate results for follow-up.  相似文献   
75.
The orchid genus Maxillaria is one of the largest and most common of neotropical orchid genera, but its current generic boundaries and relationships have long been regarded as artificial. Phylogenetic relationships within subtribe Maxillariinae sensu Dressler (1993) with emphasis on Maxillaria s.l. were inferred using parsimony analyses of individual and combined DNA sequence data. We analyzed a combined matrix of nrITS DNA, the plastid matK gene and flanking trnK intron, and the plastid atpB-rbcL intergenic spacer for 619 individuals representing ca. 354 species. The plastid rpoC1 gene (ca. 2600 bp) was sequenced for 84 selected species and combined in a more limited analysis with the other data sets to provide greater resolution. In a well-resolved, supported consensus, most clades were present in more than one individual analysis. All the currently recognized minor genera of "core" Maxillariinae (Anthosiphon, Chrysocycnis, Cryptocentrum, Cyrtidiorchis, Mormolyca, Pityphyllum, and Trigonidium) are embedded within a polyphyletic Maxillaria s.l. Our results support the recognition of a more restricted Maxillaria, of some previously published segregate genera (Brasiliorchis, Camaridium, Christensonella, Heterotaxis, Ornithidium, Sauvetrea), and of several novel clades at the generic level. These revised monophyletic generic concepts should minimize further nomenclatural changes, encourage monographic studies, and facilitate more focused analyses of character evolution within Maxillariinae.  相似文献   
76.
77.
Peptides derived from various regions of the alpha 2A-adrenergic receptor (alpha 2A-AR) were used to study receptor-G protein interactions. Binding of the partial agonist [125I]-p-iodoclonidine and the full agonist [3H]bromoxidine (UK14,304) to membrane preparations from human platelet was potently reduced by peptides (12-14 amino acids) from the second cytoplasmic loop (A) and the C-terminal side of the third cytoplasmic loop (Q). Binding of the antagonist [3H]yohimbine was significantly less affected. Five other peptides had no significant effects on ligand binding at concentrations less than 100 microM. The IC50 values for peptides A and Q were 7 and 27 microM for [125I]-p-iodoclonidine binding at the platelet alpha 2A receptor, 15 and 71 microM for the neuroblastoma-glioma (NG108-15) alpha 2B receptor, and greater than 300 microM for yohimbine binding at both alpha 2A and alpha 2B receptors. Competition studies demonstrate that at concentrations of 100 microM, peptides A and Q reduce the affinity of bromoxidine for the platelet alpha 2A-AR and this effect was abolished in the presence of guanine nucleotide. Alpha 2A-AR-stimulated GTPase activity in platelet membranes was inhibited by peptide Q with an IC50 of 16 microM but A was inactive. These data suggest that both the second cytoplasmic loop and the C-terminal part of the third cytoplasmic loop of the alpha 2A-AR are important in the interaction between the alpha 2-AR and Gi protein. Peptide Q appears to destabilize the high affinity state of the alpha 2-AR by binding directly to Gi thus preventing it from coupling to the receptor under both binding and GTPase assay conditions. The peptide from the second cytoplasmic loop (A) also reduces high affinity agonist binding in a G protein-dependent manner but its interaction with receptor and G protein is distinct in that it does not prevent activation of the G protein. These results provide new information about regions of the alpha 2-adrenergic receptor involved in G protein coupling and high affinity agonist binding.  相似文献   
78.
Kosteletzkya s.s. is a genus of 17 species (excluding the endemic species of Madagascar), found in the New World, continental Africa, Madagascar, and Southeast Asia. Recent chromosome counts revealed diploid, tetraploid, and hexaploid species. To estimate the history of the genus, we sequenced nuclear and plastid loci for nearly all Kosteletzkya spp., in the majority of cases, with multiple accessions per species. The African species form a paraphyletic grade relative to a New World clade. Polyploidy has occurred only in some African species, resulting in the relatively ancient formation of one putative autotetraploid species (K. semota), one recent allotetraploid species (K. borkouana), two relatively ancient allotetraploid species (K. begoniifolia and K. rotundalata) and one recent allohexaploid species (K. racemosa). Our inferences regarding the hypothesized parentage of the polyploids mostly corroborate previous work based on chromosome‐pairing patterns in artificial hybrids, highlighting the utility of these complementary data sources. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 421–435.  相似文献   
79.
The molecular interactions between human melanocortin receptor-1 and -4 (hMC1R and hMC4R) and their endogenous antagonists, agouti signaling protein (ASIP) and agouti-related protein (AGRP), were assessed by studying the effects of site-directed mutations on the binding affinity of (125)I-ASIP[90-132(L89Y)] and (125)I-AGRP(86-132). Mutations of homologous residues from transmembrane helices (TMHs) 3 and 6 and extracellular loop (EL) 3 (D121A, T124A, F257A, and F277M in hMC1R and D126A, I129A F261A, and M281F in hMC4R) impaired binding of both antagonists to hMC4R and binding of the ASIP fragment to hMC1R. However, the mutations in TMH2 (E94A in hMC1R and E100A in hMC4R), TMH7 (F280A in hMC1R and F284A in hMC4R), and EL2 (Y183S, H184S, and D184H in hMC1R) only significantly affected binding of the ASIP fragment. The dependence of agonist binding on the dithiothreitol concentration followed a monophasic curve for wild-type hMC4R and its C40A, C271A, and C279A mutants and a biphasic curve for hMC1R, suggesting the presence of at least one structurally and functionally essential disulfide bond in both wild-type receptors and the hMC4R mutants. Models of complexes of both receptors with the ASIP fragment and hMC4R with the AGRP fragment were calculated using constraints from the experimental structures of rhodopsin and AGRP fragments, a set of deduced hydrogen bonds, supplemented by two proposed disulfide bridges and receptor-ligand contacts, derived from our mutagenesis data. In the models of the ASIP fragment complexed with both receptors, the core ligand tripeptide, Arg-Phe-Phe, positioned between TMHs 3 and 6, is shifted toward TMHs 2 and 7 relative to its position in the AGRP-hMC4R model, while the N-terminal loop and two central disulfides of the antagonists interact with EL2 of the receptors.  相似文献   
80.
This paper introduces the concept of phase-locking analysis of oscillatory cellular signaling systems to elucidate biochemical circuit architecture. Phase-locking is a physical phenomenon that refers to a response mode in which system output is synchronized to a periodic stimulus; in some instances, the number of responses can be fewer than the number of inputs, indicative of skipped beats. While the observation of phase-locking alone is largely independent of detailed mechanism, we find that the properties of phase-locking are useful for discriminating circuit architectures because they reflect not only the activation but also the recovery characteristics of biochemical circuits. Here, this principle is demonstrated for analysis of a G-protein coupled receptor system, the M3 muscarinic receptor-calcium signaling pathway, using microfluidic-mediated periodic chemical stimulation of the M3 receptor with carbachol and real-time imaging of resulting calcium transients. Using this approach we uncovered the potential importance of basal IP3 production, a finding that has important implications on calcium response fidelity to periodic stimulation. Based upon our analysis, we also negated the notion that the Gq-PLC interaction is switch-like, which has a strong influence upon how extracellular signals are filtered and interpreted downstream. Phase-locking analysis is a new and useful tool for model revision and mechanism elucidation; the method complements conventional genetic and chemical tools for analysis of cellular signaling circuitry and should be broadly applicable to other oscillatory pathways.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号