首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   358篇
  免费   27篇
  2022年   2篇
  2021年   3篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   5篇
  2015年   15篇
  2014年   9篇
  2013年   20篇
  2012年   23篇
  2011年   22篇
  2010年   16篇
  2009年   13篇
  2008年   22篇
  2007年   17篇
  2006年   17篇
  2005年   23篇
  2004年   8篇
  2003年   15篇
  2002年   20篇
  2001年   23篇
  2000年   7篇
  1999年   5篇
  1998年   7篇
  1997年   7篇
  1996年   5篇
  1994年   2篇
  1993年   2篇
  1992年   5篇
  1991年   9篇
  1990年   5篇
  1989年   2篇
  1988年   7篇
  1985年   5篇
  1984年   6篇
  1983年   3篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1976年   1篇
  1975年   2篇
  1974年   3篇
  1970年   4篇
  1969年   1篇
  1967年   1篇
  1966年   1篇
  1957年   1篇
  1950年   1篇
  1948年   1篇
  1927年   1篇
排序方式: 共有385条查询结果,搜索用时 15 毫秒
21.
We explore a set of simple, nonlinear, two-stage models that allow us to compare the effects of density dependence on population dynamics among different kinds of life cycles. We characterize the behavior of these models in terms of their equilibria, bifurcations, and nonlinear dynamics, for a wide range of parameters. Our analyses lead to several generalizations about the effects of life history and density dependence on population dynamics. Among these are: (1) iteroparous life histories are more likely to be stable than semelparous life histories; (2) an increase in juvenile survivorship tends to be stabilizing; (3) density-dependent adult survival cannot control population growth when reproductive output is high; (4) density-dependent reproduction is more likely to cause chaotic dynamics than density dependence in other vital rates; and (5) changes in development rate have only small effects on bifurcation patterns. Received: 12 April 1999 / Published online: 3 August 2000  相似文献   
22.
Estimation of evolutionary distances from coding sequences must take into account protein-level selection to avoid relative underestimation of longer evolutionary distances. Current modeling of selection via site-to-site rate heterogeneity generally neglects another aspect of selection, namely position-specific amino acid frequencies. These frequencies determine the maximum dissimilarity expected for highly diverged but functionally and structurally conserved sequences, and hence are crucial for estimating long distances. We introduce a codon- level model of coding sequence evolution in which position-specific amino acid frequencies are free parameters. In our implementation, these are estimated from an alignment using methods described previously. We use simulations to demonstrate the importance and feasibility of modeling such behavior; our model produces linear distance estimates over a wide range of distances, while several alternative models underestimate long distances relative to short distances. Site-to-site differences in rates, as well as synonymous/nonsynonymous and first/second/third-codon-position differences, arise as a natural consequence of the site-to-site differences in amino acid frequencies.   相似文献   
23.
24.
Metabolomics is an emerging field that involves qualitative and quantitative measurements of small molecule metabolites in a biological system. These measurements can be useful for developing biomarkers for diagnosis, prognosis, or predicting response to therapy. Currently, a wide variety of metabolomics approaches, including nontargeted and targeted profiling, are used across laboratories on a routine basis. A diverse set of analytical platforms, such as NMR, gas chromatography-mass spectrometry, Orbitrap mass spectrometry, and time-of-flight-mass spectrometry, which use various chromatographic and ionization techniques, are used for resolution, detection, identification, and quantitation of metabolites from various biological matrices. However, few attempts have been made to standardize experimental methodologies or comparative analyses across different laboratories. The Metabolomics Research Group of the Association of Biomolecular Resource Facilities organized a “round-robin” experiment type of interlaboratory study, wherein human plasma samples were spiked with different amounts of metabolite standards in 2 groups of biologic samples (A and B). The goal was a study that resembles a typical metabolomics analysis. Here, we report our efforts and discuss challenges that create bottlenecks for the field. Finally, we discuss benchmarks that could be used by laboratories to compare their methodologies.  相似文献   
25.
Small Heat Shock Proteins (sHSPs) are molecular chaperones that transiently interact with other proteins, thereby assisting with quality control of proper protein folding and/or degradation. They are also recruited to protect cells from a variety of stresses in response to extreme heat, heavy metals, and oxidative-reductive stress. Although ten human sHSPs have been identified, their likely diverse biological functions remain an enigma in health and disease, and much less is known about non-redundant roles in selective cells and tissues. Herein, we set out to comprehensively characterize the cardiac-restricted Heat Shock Protein B-2 (HspB2), which exhibited ischemic cardioprotection in transgenic overexpressing mice including reduced infarct size and maintenance of ATP levels. Global yeast two-hybrid analysis using HspB2 (bait) and a human cardiac library (prey) coupled with co-immunoprecipitation studies for mitochondrial target validation revealed the first HspB2 “cardiac interactome” to contain many myofibril and mitochondrial-binding partners consistent with the overexpression phenotype. This interactome has been submitted to the Biological General Repository for Interaction Datasets (BioGRID). A related sHSP chaperone HspB5 had only partially overlapping binding partners, supporting specificity of the interactome as well as non-redundant roles reported for these sHSPs. Evidence that the cardiac yeast two-hybrid HspB2 interactome targets resident mitochondrial client proteins is consistent with the role of HspB2 in maintaining ATP levels and suggests new chaperone-dependent functions for metabolic homeostasis. One of the HspB2 targets, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), has reported roles in HspB2 associated phenotypes including cardiac ATP production, mitochondrial function, and apoptosis, and was validated as a potential client protein of HspB2 through chaperone assays. From the clientele and phenotypes identified herein, it is tempting to speculate that small molecule activators of HspB2 might be deployed to mitigate mitochondrial related diseases such as cardiomyopathy and neurodegenerative disease.  相似文献   
26.
Collagens of either soft connective or mineralized tissues are subject to continuous remodeling and turnover. Undesired cleavage can be the result of an imbalance between proteases and their inhibitors. Owing to their superhelical structure, collagens are resistant to many proteases and matrix metalloproteinases (MMPs) are required to initiate further degradation by other enzymes. Several MMPs are known to degrade collagens, but the action of MMP-12 has not yet been studied in detail. In this work, the potential of MMP-12 in recognizing sites in human skin collagen types I and III has been investigated. The catalytic domain of MMP-12 binds to the triple helix and cleaves the typical sites -Gly775-Leu776- in α-2 type I collagen and -Gly775-Ile776- in α-1 type I and type III collagens and at multiple other sites in both collagen types. Moreover, it was observed that the region around these typical sites contains comparatively less prolines, of which some have been proven to be only partially hydroxylated. This is of relevance since partial hydroxylation in the vicinity of a potential scissile bond may have a local effect on the conformational thermodynamics with probable consequences on the collagenolysis process. Taken together, the results of the present work confirm that the catalytic domain of MMP-12 alone binds and degrades collagens I and III.  相似文献   
27.
An immunoaffinity liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the quantitation of the zinc endopeptidase matrix metalloproteinase 9 (MMP-9) from mouse serum. Sample preparation for the assay included magnetic bead-based enrichment using an MMP-9 antibody and was performed in a 96-well plate format using a liquid-handling robotic platform. The surrogate peptide GSPLQGPFLTAR derived from MMP-9 by trypsin digestion was monitored using an on-line capillary flow trap-release chromatography setup incorporating a series of trap columns (C18, strong cation exchange, and another C18) prior to nanoflow chromatography and nanospray ionization with selected reaction monitoring (SRM) detection. The assay was fit-for-purpose validated and found to be accurate (<15% interbatch relative error) and precise (<15% interbatch coefficient of variation) across a range from 0.03 to 7.3 nM mouse MMP-9. Finally, the method was employed to measure MMP-9 concentrations in 30 naïve mouse serum samples, and results were compared with those obtained by an immunoassay.  相似文献   
28.

Introduction  

Recently an association between a genetic variation in TRAF1/C5 and mortality from sepsis or cancer was found in rheumatoid arthritis (RA). The most prevalent cause of death, cardiovascular disease, may have been missed in that study, since patients were enrolled at an advanced disease stage. Therefore, we used an inception cohort of RA patients to investigate the association between TRAF1/C5 and cardiovascular mortality, and replicate the findings on all-cause mortality. As TRAF1/C5 associated mortality may not be restricted to RA, we also studied a large cohort of non-RA patients.  相似文献   
29.

Introduction

To investigate whether accelerated hand bone mineral density (BMD) loss is associated with progressive joint damage in hands and feet in the first year of rheumatoid arthritis (RA) and whether it is an independent predictor of subsequent progressive total joint damage after 4 years.

Methods

In 256 recent-onset RA patients, baseline and 1-year hand BMD was measured in metacarpals 2-4 by digital X-ray radiogrammetry. Joint damage in hands and feet were scored in random order according to the Sharp-van der Heijde method at baseline and yearly up to 4 years.

Results

68% of the patients had accelerated hand BMD loss (>-0.003 g/cm2) in the first year of RA. Hand BMD loss was associated with progressive joint damage after 1 year both in hands and feet with odds ratios (OR) (95% confidence intervals [CI]) of 5.3 (1.3-20.9) and 3.1 (1.0-9.7). In univariate analysis, hand BMD loss in the first year was a predictor of subsequent progressive total joint damage after 4 years with an OR (95% CI) of 3.1 (1.3-7.6). Multivariate analysis showed that only progressive joint damage in the first year and anti-citrullinated protein antibody positivity were independent predictors of long-term progressive joint damage.

Conclusions

In the first year of RA, accelerated hand BMD loss is associated with progressive joint damage in both hands and feet. Hand BMD loss in the first year of recent-onset RA predicts subsequent progressive total joint damage, however not independent of progressive joint damage in the first year.  相似文献   
30.
It takes time for individuals to move from place to place. This travel time can be incorporated into metapopulation models via a delay in the interpatch migration term. Such a term has been shown to stabilize the positive equilibrium of the classical Lotka-Volterra predator-prey system with one species (either the predator or the prey) dispersing. We study a more realistic, Rosenzweig-MacArthur, model that includes a carrying capacity for the prey, and saturating functional response for the predator. We show that dispersal delays can stabilize the predator-prey equilibrium point despite the presence of a Type II functional response that is known to be destabilizing. We also show that dispersal delays reduce the amplitude of oscillations when the equilibrium is unstable, and therefore may help resolve the paradox of enrichment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号