首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1816篇
  免费   144篇
  国内免费   1篇
  1961篇
  2023年   4篇
  2022年   26篇
  2021年   39篇
  2020年   14篇
  2019年   23篇
  2018年   34篇
  2017年   25篇
  2016年   59篇
  2015年   103篇
  2014年   116篇
  2013年   113篇
  2012年   176篇
  2011年   135篇
  2010年   96篇
  2009年   90篇
  2008年   126篇
  2007年   113篇
  2006年   93篇
  2005年   86篇
  2004年   99篇
  2003年   87篇
  2002年   86篇
  2001年   20篇
  2000年   16篇
  1999年   21篇
  1998年   27篇
  1997年   14篇
  1996年   18篇
  1995年   8篇
  1994年   11篇
  1993年   10篇
  1992年   8篇
  1991年   2篇
  1990年   7篇
  1989年   5篇
  1988年   3篇
  1987年   5篇
  1986年   6篇
  1985年   2篇
  1983年   2篇
  1982年   2篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1975年   3篇
  1973年   2篇
  1925年   1篇
排序方式: 共有1961条查询结果,搜索用时 0 毫秒
111.
The Antennapedia homeodomain protein of Drosophila has the ability to penetrate biological membranes and the third helix of this protein, residues 43-58, known as penetratin (RQIKIWFQNRRMKWKK-amide) has the same translocating properties as the entire protein. The variant, RQI KIFFQNRRMKFKK-amide, here called penetratin (W48F,W56F) does not have the same ability. We have determined a solution structure of penetratin and investigated the position of both peptides in negatively charged bicelles. A helical structure is seen for residues Lys46 through Met54. The secondary structure of the variant penetratin(W48F,W56F) in bicelles appears to be very similar. Paramagnetic spin-label studies and analysis of NOEs between penetratin and the phospholipids show that penetratin is located within the bicelle surface. Penetratin (W48F,W56F) is also located inside the phospholipid bicelle, however, with its N-terminus more deeply inserted than that of wild-type penetratin. The subtle differences in the way the two peptides interact with a membrane in an equilibrium situation could be important for their translocating ability. As a comparison we have also investigated the secondary structure of penetratin(W48F,W56F) in SDS micelles and the results show that the structure is very similar in SDS and bicelles. In contrast, penetratin(W48F,W56F) and penetratin appear to be located differently in SDS micelles. This clearly shows the importance of using realistic membrane mimetics for investigating peptide-membrane interactions.  相似文献   
112.
Galectin-4 (Gal-4) is a member of the galectin family of glycan binding proteins that shows a significantly higher expression in cystic tumors of the human pancreas and in pancreatic adenocarcinomas compared to normal pancreas. However, the putative function of Gal-4 in tumor progression of pancreatic cancer is still incompletely understood. In this study the role of Gal-4 in cancer progression was investigated, using a set of defined pancreatic cancer cell lines, Pa-Tu-8988S (PaTu-S) and Pa-Tu-8988T (PaTu-T), as a model. These two cell lines are derived from the same liver metastasis of a human primary pancreatic adenocarcinoma, but differ in their growth characteristics and metastatic capacity. We demonstrated that Gal-4 expression is high in PaTu-S, which shows poor migratory properties, whereas much lower Gal-4 levels are observed in the highly metastatic cell line PaTu-T. In PaTu-S, Gal-4 is found in the cytoplasm, but it is also secreted and accumulates at the membrane at sites of contact with neighboring cells. Moreover, we show that Gal-4 inhibits metastasis formation by delaying migration of pancreatic cancer cells in vitro using a scratch assay, and in vivo using zebrafish (Danio rerio) as an experimental model. Our data suggest that Gal-4 may act at the cell-surface of PaTu-S as an adhesion molecule to prevent release of the tumor cells, but has in addition a cytosolic function by inhibiting migration via a yet unknown mechanism.  相似文献   
113.
114.
Activation of the nuclear farnesoid X receptor (FXR) which acts as cellular bile acid sensor has been validated as therapeutic strategy to counter liver disorders such as non-alcoholic steatohepatitis by the clinical efficacy of obeticholic acid. FXR antagonism, in contrast, is less well studied and potent small molecule FXR antagonists are rare. Here we report the systematic optimization of a novel class of FXR antagonists towards low nanomolar potency. The most optimized compound antagonizes baseline and agonist induced FXR activity in a full length FXR reporter gene assay and represses intrinsic expression of FXR regulated genes in hepatoma cells. With this activity and a favorable toxicity-, stability- and selectivity-profile it appears suitable to further study FXR antagonism in vitro and in vivo.  相似文献   
115.
We investigated the role of Fcγ receptors (FcγRs) on synovial macrophages in immune-complex-mediated arthritis (ICA). ICA elicited in knee joints of C57BL/6 mice caused a short-lasting, florid inflammation and reversible loss of proteoglycans (PGs), moderate chondrocyte death, and minor erosion of the cartilage. In contrast, when ICA was induced in knee joints of Fc receptor (FcR) γ-chain-/- C57BL/6 mice, which lack functional FcγRI and RIII, inflammation and cartilage destruction were prevented. When ICA was elicited in DBA/1 mice, a very severe, chronic inflammation was observed, and significantly more chondrocyte death and cartilage erosion than in arthritic C57BL/6 mice. The synovial lining and peritoneal macrophages of na?ve DBA/1 mice expressed a significantly higher level of FcγRs than was seen in C57BL/6 mice. Moreover, elevated and prolonged expression of IL-1 was found after stimulation of these cells with immune complexes. Zymosan or streptococcal cell walls caused comparable inflammation and only mild cartilage destruction in all strains. We conclude that FcγR expression on synovial macrophages may be related to the severity of synovial inflammation and cartilage destruction during ICA.  相似文献   
116.
Restoration of correct neural activity following central nervous system (CNS) damage requires the replacement of degenerated axons with newly outgrowing, functional axons. Unfortunately, spontaneous regeneration is largely lacking in the adult mammalian CNS. In order to establish successful regenerative therapies, an improved understanding of axonal outgrowth and the various molecules influencing it, is highly needed. Matrix metalloproteinases (MMPs) constitute a family of zinc‐dependent proteases that were sporadically reported to influence axon outgrowth. Using an ex vivo retinal explant model, we were able to show that broad‐spectrum MMP inhibition reduces axon outgrowth of mouse retinal ganglion cells (RGCs), implicating MMPs as beneficial factors in axonal regeneration. Additional studies, using more specific MMP inhibitors and MMP‐deficient mice, disclosed that both MMP‐2 and MT1‐MMP, but not MMP‐9, are involved in this process. Furthermore, administration of a novel antibody to MT1‐MMP that selectively blocks pro‐MMP‐2 activation revealed a functional co‐involvement of these proteinases in determining RGC axon outgrowth. Subsequent immunostainings showed expression of both MMP‐2 and MT1‐MMP in RGC axons and glial cells. Finally, results from combined inhibition of MMP‐2 and β1‐integrin were suggestive for a functional interaction between these molecules. Overall, our data indicate MMP‐2 and MT1‐MMP as promising axonal outgrowth‐promoting molecules.

  相似文献   

117.
118.
While quite some research has focussed on the accuracy of haptic perception of distance, information on the precision of haptic perception of distance is still scarce, particularly regarding distances perceived by making arm movements. In this study, eight conditions were measured to answer four main questions, which are: what is the influence of reference distance, movement axis, perceptual mode (active or passive) and stimulus type on the precision of this kind of distance perception? A discrimination experiment was performed with twelve participants. The participants were presented with two distances, using either a haptic device or a real stimulus. Participants compared the distances by moving their hand from a start to an end position. They were then asked to judge which of the distances was the longer, from which the discrimination threshold was determined for each participant and condition. The precision was influenced by reference distance. No effect of movement axis was found. The precision was higher for active than for passive movements and it was a bit lower for real stimuli than for rendered stimuli, but it was not affected by adding cutaneous information. Overall, the Weber fraction for the active perception of a distance of 25 or 35 cm was about 11% for all cardinal axes. The recorded position data suggest that participants, in order to be able to judge which distance was the longer, tried to produce similar speed profiles in both movements. This knowledge could be useful in the design of haptic devices.  相似文献   
119.
Appearance is known to influence social interactions, which in turn could potentially influence personality development. In this study we focus on discovering the relationship between self-reported personality traits, first impressions and facial characteristics. The results reveal that several personality traits can be read above chance from a face, and that facial features influence first impressions. Despite the former, our prediction model fails to reliably infer personality traits from either facial features or first impressions. First impressions, however, could be inferred more reliably from facial features. We have generated artificial, extreme faces visualising the characteristics having an effect on first impressions for several traits. Conclusively, we find a relationship between first impressions, some personality traits and facial features and consolidate that people on average assess a given face in a highly similar manner.  相似文献   
120.
The large GTPase dynamin assembles into higher order structures that are thought to promote endocytosis. Dynamin also regulates the actin cytoskeleton through an unknown, GTPase-dependent mechanism. Here, we identify a highly conserved site in dynamin that binds directly to actin filaments and aligns them into bundles. Point mutations in the actin-binding domain cause aberrant membrane ruffling and defective actin stress fibre formation in cells. Short actin filaments promote dynamin assembly into higher order structures, which in turn efficiently release the actin-capping protein (CP) gelsolin from barbed actin ends in vitro, allowing for elongation of actin filaments. Together, our results support a model in which assembled dynamin, generated through interactions with short actin filaments, promotes actin polymerization via displacement of actin-CPs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号