全文获取类型
收费全文 | 214篇 |
免费 | 18篇 |
专业分类
232篇 |
出版年
2023年 | 1篇 |
2022年 | 4篇 |
2021年 | 4篇 |
2020年 | 3篇 |
2019年 | 5篇 |
2018年 | 3篇 |
2017年 | 8篇 |
2016年 | 4篇 |
2015年 | 10篇 |
2014年 | 8篇 |
2013年 | 12篇 |
2012年 | 20篇 |
2011年 | 15篇 |
2010年 | 8篇 |
2009年 | 10篇 |
2008年 | 10篇 |
2007年 | 10篇 |
2006年 | 10篇 |
2005年 | 9篇 |
2004年 | 15篇 |
2003年 | 5篇 |
2002年 | 5篇 |
2001年 | 2篇 |
2000年 | 1篇 |
1998年 | 3篇 |
1996年 | 3篇 |
1994年 | 1篇 |
1992年 | 1篇 |
1990年 | 2篇 |
1989年 | 6篇 |
1988年 | 5篇 |
1987年 | 4篇 |
1986年 | 1篇 |
1985年 | 3篇 |
1984年 | 1篇 |
1983年 | 3篇 |
1982年 | 1篇 |
1981年 | 2篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1977年 | 2篇 |
1976年 | 2篇 |
1975年 | 2篇 |
1974年 | 1篇 |
1973年 | 4篇 |
1972年 | 1篇 |
排序方式: 共有232条查询结果,搜索用时 0 毫秒
41.
42.
43.
An exceptional family: Ophiocordyceps‐allied fungus dominates the microbiome of soft scale insects (Hemiptera: Sternorrhyncha: Coccidae) 下载免费PDF全文
Priscila Gomez‐Polo Matthew J. Ballinger Maya Lalzar Assaf Malik Yair Ben‐Dov Neta Mozes‐Daube Steve J. Perlman Lilach Iasur‐Kruh Elad Chiel 《Molecular ecology》2017,26(20):5855-5868
Hemipteran insects of the suborder Sternorrhyncha are plant sap feeders, where each family is obligately associated with a specific bacterial endosymbiont that produces essential nutrients lacking in the sap. Coccidae (soft scale insects) is the only major sternorrhynchan family in which obligate symbiont(s) have not been identified. We studied the microbiota in seven species from this family from Israel, Spain and Cyprus, by high‐throughput sequencing of ribosomal genes, and found that no specific bacterium was prevalent and abundant in all the tested species. In contrast, an Ophiocordyceps‐allied fungus sp.—a lineage widely known as entomopathogenic—was highly prevalent. All individuals of all the tested species carried this fungus. Phylogenetic analyses showed that the Ophiocordyceps‐allied fungus from the coccids is closely related to fungi described from other hemipterans, and they appear to be monophyletic, although the phylogenies of the Ophiocordyceps‐allied fungi and their hosts do not appear to be congruent. Microscopic observations show that the fungal cells are lemon‐shaped, are distributed throughout the host's body and are present in the eggs, suggesting vertical transmission. Taken together, the results suggest that the Ophiocordyceps‐allied fungus may be a primary symbiont of Coccidae—a major evolutionary shift from bacteria to fungi in the Sternorrhyncha, and an important example of fungal evolutionary lifestyle switch. 相似文献
44.
Interleukin 1 alpha (IL-1 alpha), tumor necrosis factor alpha (TNF alpha), granulocyte-colony-stimulating factor (G-CSF), and granulocyte-macrophage colony-stimulating factor (GM-CSF) are molecularly distinct cytokines acting on separate receptors. The release of these cytokines can be concomitantly induced by the same signal and from the same cellular source, suggesting that they may cooperate. Administered alone, human recombinant (hr)IL-1 alpha and hrTNF alpha protect lethally irradiated mice from death, whereas murine recombinant GM-CSF and hrG-CSF do not confer similar protection. On a dose basis, IL-1 alpha is a more efficient radioprotector than TNF alpha. At optimal doses, IL-1 alpha is a more radioprotective cytokine than TNF alpha in C57BL/6 and B6D2F1 mice and less effective than TNF alpha in C3H/HeN mice, suggesting that the relative effectiveness of TNF alpha and IL-1 alpha depends on the genetic makeup of the host. Administration of the two cytokines in combination results in additive radioprotection in all three strains. This suggests that the two cytokines act through different radioprotective pathways and argues against their apparent redundancy. Suboptimal, nonradioprotective doses of IL-1 alpha also synergize with GM-CSF or G-CSF to confer optimal radioprotection, suggesting that such an interaction may be necessary for radioprotection of hemopoietic progenitor cells. 相似文献
45.
DNA double-strand breaks (DSBs) and other lesions occur frequently during cell growth and in meiosis. These are often repaired by homologous recombination (HR). HR may result in the formation of DNA structures called Holliday junctions (HJs), which need to be resolved to allow chromosome segregation. Whereas HJs are present in most HR events in meiosis, it has been proposed that in vegetative cells most HR events occur through intermediates lacking HJs. A recent screen in yeast has shown HJ resolution activity for a protein called Yen1, in addition to the previously known Mus81/Mms4 complex. Yeast strains deleted for both YEN1 and MMS4 show a reduction in growth rate, and are very sensitive to DNA-damaging agents. In addition, we investigate the genetic interaction of yen1 and mms4 with mutants defective in different repair pathways. We find that in the absence of Yen1 and Mms4 deletion of RAD1 or RAD52 have no further effect, whereas additional sensitivity is seen if RAD51 is deleted. Finally, we show that yeast cells are unable to carry out meiosis in the absence of both resolvases. Our results show that both Yen1 and Mms4/Mus81 play important (although not identical) roles during vegetative growth and in meiosis. 相似文献
46.
47.
The tricarboxylic acid cycle enzyme aconitase in yeast is a single translation product, which is dual targeted and distributed between the mitochondria and the cytosol by a unique mechanism involving reverse translocation. There is limited understanding regarding the precise mechanism of reverse translocation across the mitochondrial membranes. Here, we examined the contribution of the mature part of aconitase to its dual targeting. We created a set of aconitase mutants harboring two kinds of alterations: (1) point mutations or very small deletions in conserved sites and (2) systematic large deletions. These mutants were screened for their localization by a α-complementation assay, which revealed that the aconitase fourth domain that is at the C-terminus (amino acids 517-778) is required for aconitase distribution. Moreover, fusion of this C-terminal domain to mitochondria-targeted passenger proteins such as dihydrofolate reductase and orotidine-5′-phosphate decarboxylase, conferred dual localization on them. These results indicate that the aconitase C-terminal domain is both necessary and sufficient for dual targeting, thereby functioning as an “independent signal”. In addition, the same C-terminal domain was shown to be necessary for aconitase efficient posttranslational import into mitochondria. 相似文献
48.
Ben-Zaken O Shafat I Gingis-Velitski S Bangio H Kelson IK Alergand T Amor Y Maya RB Vlodavsky I Ilan N 《The international journal of biochemistry & cell biology》2008,40(3):530-542
Heparanase is an endoglycosidase which cleaves heparan sulfate and hence participates in degradation and remodeling of the extracellular matrix. Importantly, heparanase activity correlated with the metastatic potential of tumor-derived cells, attributed to enhanced cell dissemination as a consequence of heparan sulfate cleavage and remodeling of the extracellular matrix barrier. Heparanase has been characterized as a glycoprotein, yet glycan biochemical analysis was not performed to date. Here, we applied the Qproteometrade mark GlycoArray kit to perform glycan analysis of heparanase, and compared the kit results with the more commonly used biochemical analyses. We employed fibroblasts isolated from patients with I-cell disease (mucolipidosis II), fibroblasts deficient of low density lipoprotein receptor-related protein and fibroblasts lacking mannose 6-phosphate receptor, to explore the role of mannose 6-phosphate in heparanase uptake. Iodinated heparanase has been utilized to calculate binding affinity. We provide evidence for hierarchy of binding to cellular receptors as a function of heparanase concentration. We report the existence of a high affinity, low abundant (i.e., low density lipoprotein receptor-related protein, mannose 6-phosphate receptor), as well as a low affinity, high abundant (i.e., heparan sulfate proteoglycan) receptors that mediate heparanase binding, and suggest that these receptors co-operate to establish high affinity binding sites for heparanase, thus maintaining extracellular retention of the enzyme tightly regulated. 相似文献
49.
50.