首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   221篇
  免费   24篇
  2022年   5篇
  2021年   4篇
  2020年   3篇
  2019年   5篇
  2018年   3篇
  2017年   4篇
  2016年   4篇
  2015年   10篇
  2014年   8篇
  2013年   12篇
  2012年   18篇
  2011年   15篇
  2010年   8篇
  2009年   8篇
  2008年   10篇
  2007年   10篇
  2006年   11篇
  2005年   12篇
  2004年   19篇
  2003年   8篇
  2002年   6篇
  2001年   5篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1991年   1篇
  1990年   2篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1985年   4篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1973年   4篇
  1972年   1篇
排序方式: 共有245条查询结果,搜索用时 31 毫秒
41.
42.
43.
44.
Necroptosis is a regulated and inflammatory form of cell death. We, and others, have previously reported that necroptotic cells release extracellular vesicles (EVs). We have found that necroptotic EVs are loaded with proteins, including the phosphorylated form of the key necroptosis-executing factor, mixed lineage kinase domain-like kinase (MLKL). However, neither the exact protein composition, nor the impact, of necroptotic EVs have been delineated. To characterize their content, EVs from necroptotic and untreated U937 cells were isolated and analyzed by mass spectrometry-based proteomics. A total of 3337 proteins were identified, sharing a high degree of similarity with exosome proteome databases, and clearly distinguishing necroptotic and control EVs. A total of 352 proteins were significantly upregulated in the necroptotic EVs. Among these were MLKL and caspase-8, as validated by immunoblot. Components of the ESCRTIII machinery and inflammatory signaling were also upregulated in the necroptotic EVs, as well as currently unreported components of vesicle formation and transport, and necroptotic signaling pathways. Moreover, we found that necroptotic EVs can be phagocytosed by macrophages to modulate cytokine and chemokine secretion. Finally, we uncovered that necroptotic EVs contain tumor neoantigens, and are enriched with components of antigen processing and presentation. In summary, our study reveals a new layer of regulation during the early stage of necroptosis, mediated by the secretion of specific EVs that influences the microenvironment and may instigate innate and adaptive immune responses. This study sheds light on new potential players in necroptotic signaling and its related EVs, and uncovers the functional tasks accomplished by the cargo of these necroptotic EVs.Subject terms: Necroptosis, Cell death and immune response  相似文献   
45.
Hemipteran insects of the suborder Sternorrhyncha are plant sap feeders, where each family is obligately associated with a specific bacterial endosymbiont that produces essential nutrients lacking in the sap. Coccidae (soft scale insects) is the only major sternorrhynchan family in which obligate symbiont(s) have not been identified. We studied the microbiota in seven species from this family from Israel, Spain and Cyprus, by high‐throughput sequencing of ribosomal genes, and found that no specific bacterium was prevalent and abundant in all the tested species. In contrast, an Ophiocordyceps‐allied fungus sp.—a lineage widely known as entomopathogenic—was highly prevalent. All individuals of all the tested species carried this fungus. Phylogenetic analyses showed that the Ophiocordyceps‐allied fungus from the coccids is closely related to fungi described from other hemipterans, and they appear to be monophyletic, although the phylogenies of the Ophiocordyceps‐allied fungi and their hosts do not appear to be congruent. Microscopic observations show that the fungal cells are lemon‐shaped, are distributed throughout the host's body and are present in the eggs, suggesting vertical transmission. Taken together, the results suggest that the Ophiocordyceps‐allied fungus may be a primary symbiont of Coccidae—a major evolutionary shift from bacteria to fungi in the Sternorrhyncha, and an important example of fungal evolutionary lifestyle switch.  相似文献   
46.
Bioprocess and Biosystems Engineering - This study aims to evaluate membrane bioreactor (MBR) performance in a pilot scale to treat petroleum refinery effluent, and has been primarily focused on...  相似文献   
47.
Low and high affinity receptors mediate cellular uptake of heparanase   总被引:1,自引:0,他引:1  
Heparanase is an endoglycosidase which cleaves heparan sulfate and hence participates in degradation and remodeling of the extracellular matrix. Importantly, heparanase activity correlated with the metastatic potential of tumor-derived cells, attributed to enhanced cell dissemination as a consequence of heparan sulfate cleavage and remodeling of the extracellular matrix barrier. Heparanase has been characterized as a glycoprotein, yet glycan biochemical analysis was not performed to date. Here, we applied the Qproteometrade mark GlycoArray kit to perform glycan analysis of heparanase, and compared the kit results with the more commonly used biochemical analyses. We employed fibroblasts isolated from patients with I-cell disease (mucolipidosis II), fibroblasts deficient of low density lipoprotein receptor-related protein and fibroblasts lacking mannose 6-phosphate receptor, to explore the role of mannose 6-phosphate in heparanase uptake. Iodinated heparanase has been utilized to calculate binding affinity. We provide evidence for hierarchy of binding to cellular receptors as a function of heparanase concentration. We report the existence of a high affinity, low abundant (i.e., low density lipoprotein receptor-related protein, mannose 6-phosphate receptor), as well as a low affinity, high abundant (i.e., heparan sulfate proteoglycan) receptors that mediate heparanase binding, and suggest that these receptors co-operate to establish high affinity binding sites for heparanase, thus maintaining extracellular retention of the enzyme tightly regulated.  相似文献   
48.
Fungal apoptosis: function, genes and gene function   总被引:3,自引:0,他引:3  
Cells of all living organisms are programmed to self-destruct under certain conditions. The most well known form of programmed cell death is apoptosis, which is essential for proper development in higher eukaryotes. In fungi, apoptotic-like cell death occurs naturally during aging and reproduction, and can be induced by environmental stresses and exposure to toxic metabolites. The core apoptotic machinery in fungi is similar to that in mammals, but the apoptotic network is less complex and of more ancient origin. Only some of the mammalian apoptosis-regulating proteins have fungal homologs, and the number of protein families is drastically reduced. Expression in fungi of animal proteins that do not have fungal homologs often affects apoptosis, suggesting functional conservation of these components despite the absence of protein-sequence similarity. Functional analysis of Saccharomyces cerevisiae apoptotic genes, and more recently of those in some filamentous species, has revealed partial conservation, along with substantial differences in function and mode of action between fungal and human proteins. It has been suggested that apoptotic proteins might be suitable targets for novel antifungal treatments. However, implementation of this approach requires a better understanding of fungal apoptotic networks and identification of the key proteins regulating apoptotic-like cell death in fungi.  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号